Skip to main content
Log in

Effect of ageing temperature on precipitation of Al-Cu-Li-Mn-Zr alloy

时效温度对Al-Cu-Li-Mn-Zr 合金析出相的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The precipitation behaviors of an Al-Cu-Li-Mn-Zr alloy at different ageing temperatures (120, 160 and 200 °C) were investigated using Vickers hardness measurements and transmission electron microscopy (TEM) characterization. Age hardening curves show an increase in precipitation kinetics with increasing ageing temperature. The results of TEM show that for the samples peak aged at 120 °C, the amount of δ' (Al3Li), GP zones/θ' (Al2Cu) and χ (Al5Cu6Li2) phases is obviously higher than that of T1 (Al2CuLi) precipitates; while the samples peak aged at 160 and 200 °C are usually dominated by T1 phase with a minor fraction of GP zones/θ' and δ', and the χ phase almost does not form. In addition, quantitative analysis on the T1 platelets demonstrates that the samples peak aged at 200 °C have larger plate diameter and smaller area fraction of T1, as compared to the samples peak aged at 160 °C. Correspondingly, the possible reasons for such phenomena are discussed.

摘要

本文采用显微硬度计和透射电子显微镜(TEM)表征手段,研究不同时效温度(120、160、200 °C) 对Al-Cu-Li-Mn-Zr 合金析出行为的影响。通过分析不同时效温度下的时效硬度曲线可以得出,随着 时效温度的升高,析出相的析出速度加快。此外,由TEM 表征结果可知,当时效温度为120 °C 时, 峰值态样品的析出相主要为δ'相(Al3Li)、GP 区/θ'相(Al2Cu)和χ 相(Al5Cu6Li2),其析出量明显高 于T1 相;当时效温度为160 °C 和200 °C 时,样品峰值态的析出相主要为T1 相,并有较少的δ'相和 GP 区/θ'相,而χ 相几乎不存在。对T1 相进行定量统计可知,与时效温度为160 °C 的峰值态样品相比, 时效温度为200 °C 时峰值态样品的主要析出相T1 相的直径更大,且面积分数更小,文本对这些现象 的产生原因进行了阐述和讨论。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. RIOJA R J. Fabrication methods to manufacture isotropic Al-Li alloys and products for space and aerospace applications [J]. Materials Science and Engineering A, 1998, 257(1): 100–107.

    Article  Google Scholar 

  2. LIU Xiao, WANG Zhao, LI Qing, ZHANG Xi, CUI Hao, ZHANG Xiao. Effects of pre-deformation on microstructure and properties of Al–Cu–Mg–Ag heat-resistant alloy [J]. Journal of Central South University, 2017, 24(5): 1027–1033.

    Article  Google Scholar 

  3. STARKE E A Jr, STALEY J T. Application of modern aluminum alloys to aircraft [J]. Progress in Aerospace Sciences, 1996, 32(2, 3): 131–172.

    Article  Google Scholar 

  4. YU Cheng, YIN Deng, ZHENG Feng, YU Xin. Effects of solution treatment on mechanical properties and microstructures of Al–Li–Cu–Mg–Ag alloy [J]. Journal of Central South University, 2013, 20(8): 2083–2089.

    Article  Google Scholar 

  5. YOSHIMURA R, KONNO T J, ABE E, HIRAGA K. Transmission electron microscopy study of the evolution of precipitates in aged Al–Li–Cu alloys: The θ' and T1 phases [J]. Acta Materialia, 2003, 51(14): 4251–4266.

    Article  Google Scholar 

  6. DECREUS B, DESCHAMPS A, de GEUSER F, DONNADIEU P, SIGLI C, WEYLAND M. The influence of Cu/Li ratio on precipitation in Al–Cu–Li–x alloys [J]. Acta Materialia, 2013, 61(6): 2207–2218.

    Article  Google Scholar 

  7. YOSHIMURA R, KONNO T J, ABE E, HIRAGA K. Transmission electron microscopy study of the early stage of precipitates in aged Al–Li–Cu alloys [J]. Acta Materialia, 2003, 51(10): 2891–2903.

    Article  Google Scholar 

  8. KHAN A K, ROBINSON J S. Effect of silver on precipitation response of Al–Li–Cu–Mg alloys [J]. Materials Science and Technology, 2008, 24(11): 1369–1377.

    Article  Google Scholar 

  9. van SMAALEN S, MEETSMA A, de BOER J L, BRONSVELD P M. Refinement of the crystal structure of hexagonal Al2CuLi [J]. Journal of Solid State Chemistry, 1990, 85(2): 293–298.

    Article  Google Scholar 

  10. DONNADIEU P, SHAO Y, de GEUSER F, BOTTON G A, LAZAR S, CHEYNET M, de BOISSIEU M, DESCHAMPS A. Atomic structure of T1 precipitates in Al–Li–Cu alloys revisited with HAADF-STEM imaging and small-angle X-ray scattering [J]. Acta Materialia, 2011, 59(2): 462–472.

    Article  Google Scholar 

  11. DWYER C, WEYLAND M, CHANG L Y, MUDDLE B C. Combined electron beam imaging and ab initio modeling of T1 precipitates in Al–Li–Cu alloys [J]. Applied Physics Letters, 2011, 98(20): 201909.

    Article  Google Scholar 

  12. SILCOCK J M. The structural ageing characteristics of aluminium-copper-lithium alloys [J]. J Inst Met, 1960, 88: 357–364.

    Google Scholar 

  13. GUMBMANN E, LEFEBVRE W, de GEUSER F, SIGLI C, DESCHAMPS A. The effect of minor solute additions on the precipitation path of an Al–Cu–Li alloy [J]. Acta Materialia, 2016, 115(15): 104–114.

    Article  Google Scholar 

  14. HUANG B P, ZHENG Z Q. Independent and combined roles of trace Mg and Ag additions in properties precipitation process and precipitation kinetics of Al–Cu–Li–(Mg)–(Ag)–Zr–Ti alloys [J]. Acta Materialia, 1998, 46(12): 4381–4393.

    Article  Google Scholar 

  15. BOUKOS N, FLOUDA E, PAPASTAIKOUDIS C. The effect of Ag additions on the microstructure of aluminium-lithium alloys [J]. Journal of Materials Science, 1998, 33(12): 3213–3218.

    Article  Google Scholar 

  16. ZHENG Z Q, LIANG S Q, XU H, TAN C Y, YUN D F. Effect of 0.5% silver on the age hardening behaviour of an Al–Li–Cu–Mg–Zr alloy [J]. Journal of Materials Science Letters, 1993, 12(14): 1111–1113.

    Article  Google Scholar 

  17. LI Hong, TANG Yi, ZENG Zai, ZHENG Zi, ZHENG Feng. Effect of ageing time on strength and microstructures of an Al–Cu–Li–Zn–Mg–Mn–Zr alloy [J]. Materials Science and Engineering A, 2008, 498(1, 2): 314–320.

    Article  Google Scholar 

  18. CHEN Zhong, ZHAO Kai, FAN Li. Combinative hardening effects of precipitation in a commercial aged Al–Cu–Li–X alloy [J]. Materials Science and Engineering A, 2013, 588: 59–64.

    Article  Google Scholar 

  19. LI Hong, HUANG Da, KANG Wei, LIU Jiao, OU Yang, LI De. Effect of different aging processes on the microstructure and mechanical properties of a Novel Al–Cu–Li Alloy [J]. Journal of Materials Science & Technology, 2016, 32(10): 1049–1053.

    Article  Google Scholar 

  20. PAN Zheng, ZHENG Zi, LIAO Zhong, LI Shi. New cubic precipitate in Al–3.5Cu–1.0Li–0.5In (wt.%) alloy [J]. Materials Letters, 2010, 64(8): 942–944.

    Article  Google Scholar 

  21. BLANKENSHIP C, STARKE E. Structure-property relationships in Al–Li–Cu–Mg–Ag–Zr alloy X2095 [J]. Acta Metallurgica et Materialia, 1994, 42(3): 845–855.

    Article  Google Scholar 

  22. ZHANG Sai, ZENG Wei, YANG Wen, SHI Chun, WANG Hao. Ageing response of a Al–Cu–Li 2198 alloy [J]. Materials & Design, 2014, 63: 368–374.

    Article  Google Scholar 

  23. NOBLE B, THOMPSON G E. T1 (Al2CuLi) precipitation in aluminium–copper–lithium alloys [J]. Metal Science Journal, 1972, 6(1): 167–174.

    Article  Google Scholar 

  24. DORIN T, DESCHAMPS A, de GEUSER F, SIGLI C. Quantification and modelling of the microstructure/strength relationship by tailoring the morphological parameters of the T1 phase in an Al–Cu–Li alloy [J]. Acta Materialia, 2014, 75(15): 134–146.

    Article  Google Scholar 

  25. DENG Yan, BAI Jian, WU Xiao, HUANG Guang, CAO Ling, HUANG Li. Investigation on formation mechanism of T1 precipitate in an Al–Cu–Li alloy [J]. Journal of Alloys and Compounds, 2017, 723(5): 661–666.

    Article  Google Scholar 

  26. LI Qiong, WAWNER F E. Characterization of a cubic phase in an Al–Cu–Mg–Ag alloy [J]. Journal of Materials Science, 1997, 32(20): 5363–5370.

    Article  Google Scholar 

  27. DESCHAMPS A, GARCIA M, CHEVY J, DAVO B, de GEUSER F. Influence of Mg and Li content on the microstructure evolution of Al–Cu–Li alloys during longterm ageing [J]. Acta Materialia, 2017, 122(1): 32–46.

    Article  Google Scholar 

  28. TSIVOULAS D, ROBSON J D, SIGLI C, PRANGNELL P B. Interactions between zirconium and manganese dispersoid-forming elements on their combined addition in Al–Cu–Li alloys [J]. Acta Materialia, 2012, 60(13, 14): 5245–5259.

    Article  Google Scholar 

  29. DORIN T, DONNADIEU P, CHAIX J-M, LEFEBVRE W, de GEUSER F, DESCHAMPS A. Size distribution and volume fraction of T1 phase precipitates from TEM images: Direct measurements and related correction [J]. Micron, 2015, 78: 19–27.

    Article  Google Scholar 

  30. RODGERS B I, PRANGNELL P B. Quantification of the influence of increased pre-stretching on microstructurestrength relationships in the Al–Cu–Li alloy AA2195 [J]. Acta Materialia, 2016, 108(15): 55–67.

    Article  Google Scholar 

  31. KANG S J, KIM T H, YANG C W, LEE J I, PARK E S, NOH T W, KIM M. Atomic structure and growth mechanism of T1 precipitate in Al–Cu–Li–Mg–Ag alloy [J]. Scripta Materialia, 2015, 109: 68–71.

    Article  Google Scholar 

  32. CHEN P, BHAT B. Time-temperature-precipitation behavior in Al-Li alloy 2195 [R]. Huntsville: NASA Marshall Space Flight Center, 2002.

    Google Scholar 

  33. LORIMER G, NICHOLSON R. Further results on the nucleation of precipitates in the Al-Zn-Mg system [J]. Acta Metallurgica, 1966, 14(8): 1009–1013.

    Article  Google Scholar 

  34. RINGER S P, SOFYAN B T, PRASAD K S, QUAN G C. Precipitation reactions in Al–4.0Cu–0.3Mg (wt.%) alloy [J]. Acta Materialia, 2008, 56(9): 2147–2160.

    Article  Google Scholar 

  35. GABLE B M, ZHU A W, CSONTOS A A, STARKE E A Jr. The role of plastic deformation on the competitive microstructural evolution and mechanical properties of a novel Al-Li-Cu-X alloy [J]. Journal of Light Metals, 2001, 1(1): 1–14.

    Article  Google Scholar 

  36. del CASTILLO P E J R D, REISCHIG P, van der ZWAAG S. Tailoring of Ostwald ripening behaviour in multicomponent Al alloys [J]. Scripta Materialia, 2005, 52(8): 705–708.

    Article  Google Scholar 

  37. DORIN T, DESCHAMPS A, de GEUSER F, LEFEBVRE W, SIGLI C. Quantitative description of the T1 formation kinetics in an Al–Cu–Li alloy using differential scanning calorimetry, small-angle X-ray scattering and transmission electron microscopy [J]. Philosophical Magazine, 2014, 94(10): 1012–1030.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guang-jie Huang  (黄光杰) or Ling-fei Cao  (曹玲飞).

Additional information

Foundation item: Project(2016YFB0300901) supported by the National Key R&D Program of China; Project(51421001) supported by the National Natural Science Foundation of China; Project(2018CDJDCL0019) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Yj., Huang, Gj., Cao, Lf. et al. Effect of ageing temperature on precipitation of Al-Cu-Li-Mn-Zr alloy. J. Cent. South Univ. 25, 1340–1349 (2018). https://doi.org/10.1007/s11771-018-3830-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3830-8

Key words

关键词

Navigation