Skip to main content
Log in

Hydration film measurement on mica and coal surfaces using atomic force microscopy and interfacial interactions

原子力显微镜的云母及煤表面的水化膜测试和界面相互作用

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The hydration film on particle surface plays an important role in bubble-particle adhesion in mineral flotation process. The thicknesses of the hydration films on natural hydrophobic coal and hydrophilic mica surfaces were measured directly by atomic force microscopy (AFM) based on the bending mode of the nominal constant compliance regime in AFM force curve in the present study. Surface and solid-liquid interfacial energies were calculated to explain the forming mechanism of the hydration film and atomic force microscopy data. The results show that there are significant differences in the structure and thickness of hydration films on coal and mica surfaces. Hydration film formed on mica surface with the thickness of 22.5 nm. In contrast, the bend was not detected in the nominal constant compliance regime. The van der Waals and polar interactions between both mica and coal and water molecules are characterized by an attractive effect, while the polar attractive free energy between water and mica (−87.36 mN/m) is significantly larger than that between water and coal (−32.89 mN/m), which leads to a thicker and firmer hydration layer on the mica surface. The interfacial interaction free energy of the coal/water/bubble is greater than that of mica. The polar attractive force is large enough to overcome the repulsive van der Waals force and the low energy barrier of film rupture, achieving coal particle bubble adhesion with a total interfacial free energy of −56.30 mN/m.

摘要

颗粒表面水化膜在浮选颗粒气泡粘附过程中扮演着重要作用。借助原子力显微镜力曲线中名义 恒定区的弯曲现象完成对天然亲水性云母和疏水性煤片表面水化膜厚度的测试。同时,对表面能及固 液界面自由能进行计算揭示了水化膜的形成机制。结果发现:云母和煤表面的水化膜厚度和结构存在 明显的差异,云母表面的水化膜厚度为22.5 nm,而在煤表面并未检测到水化膜的存在。云母及煤与 水分子间的范德华和极性作用均为吸引,但云母与水分子间的极性作用能(−87.36 mN/m)远大于煤 水间的(−32.89 mN/m),因此,直接导致了更厚而坚固的水化膜。进一步发现煤-水气泡体系的界面作 用自由能(−56.30 mN/m)显著大于云母体系的,极性吸引力足以克服排斥性范德华力和颗粒气泡粘 附能垒。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. QIU Guan, HU Yue, WANG Dian. Interactions between particles and flotation of fine particles [M]. Changsha: Press of Central South University of Technology, 1993: 81–91. (in Chinese)

    Google Scholar 

  2. SONG Shao, ZHANG Yi, TOMLINSON F. Viscosity method for the determination of the thickness of solvation layers near particles dispersed in a liquid [J]. Surface Review and Letters, 2005, 12(3): 457–462.

    Article  Google Scholar 

  3. PENG Chen, MIN Fan, ZHAO Qing, LI Hong. A review: Research status and progress on hydration layers near fine mineral particles [J]. Acta Minalogica Sinica, 2012, 32(4): 515–522. (in Chinese)

    Google Scholar 

  4. ISRAELACHVILI J N, MCGUIGGAN P M. Forces between surfaces in liquids [J]. Science, 1988, 241: 795–800.

    Article  Google Scholar 

  5. HIENEBZ P C, RAJAGOPALAN R. Principles of colloid and surface chemistry [M]. New York: Marcel Dekker, 1997: 145–181.

    Google Scholar 

  6. MIN Fan, PENG Chen, LIU Ling. Investigation on hydration layers of fine clay mineral particles in different electrolyte aqueous solutions [J]. Powder Technology, 2015, 283: 368–372.

    Article  Google Scholar 

  7. JENA M S, BISWAL S K, DAS S P, REDDY P S. Comparative study of the performance of conventional and column flotation when treating coking coal fines [J]. Fuel Processing Technology, 2008, 89: 1409–1415.

    Article  Google Scholar 

  8. XING Yao, GUI Xia, LIU Jiong, CAO Yi, LU Yu. Effects of energy input on the laboratory column flotation of fine coal [J]. Separation Science and Technology, 2015, 50(16): 2559–2567.

    Google Scholar 

  9. GONG Mao, LI Chun, LI Zeng. Numerical analysis of flow in a highly efficient flotation column [J]. Asia–Pacific Journal of Chemical Engineering, 2015, 10(1): 84–95.

    Google Scholar 

  10. NGUYEN A V, SCHULZE H J. Colloidal science of flotation [M]. New York: Marcel Dekker, 2004.

    Google Scholar 

  11. PAN LEI, JUNG S, YOON R H. Effect of hydrophobicity on the stability of the wetting films of water formed on gold surfaces [J]. Journal of Colloid and Interface Science, 2011, 361: 321–330.

    Article  Google Scholar 

  12. PAN L, JUNG S, YOON R H. A fundamental study on the role of collector in the kinetics of bubble-particle interaction [J]. International Journal of Mineral Processing, 2012, 106–109(2): 37–41.

    Article  Google Scholar 

  13. NGUYEN A V. Froth flotation [M]//Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. 2013: 1–26.

    Google Scholar 

  14. DROST-HANSEN W. Effects of vicinal water on colloidal stability and sedimentation processes [J]. Journal of Colloid and Interface Science, 1977, 58(2): 251–262.

    Article  Google Scholar 

  15. LI Ying, KANDA Y, SHINTO H, HIGASHITANI K. Fragile structured layers on surfaces detected by dynamic atomic force microscopy in aqueous electrolyte solutions [J]. Advanced Powder Technology, 2005, 16(3): 213–229.

    Article  Google Scholar 

  16. LYKLEMA J, ROVILLARD S, CONINCK J D. Electrokinetics: The properties of the stagnant layer unraveled [J]. Langmuir, 1998, 14: 5659–5663.

    Article  Google Scholar 

  17. VAKARELSKI I U, HIGASHIYANI K. Dynamic features of short-range interaction force and adhesion in solutions [J]. Journal of Colloid and Interface Science, 2001, 242: 110–120.

    Article  Google Scholar 

  18. KIM H I, KUSHMERICK J G, HOUSTON J E, BUNKER B C. Viscous ‘interphase’ water adjacent to oligo (ethylene glycol)-terminated monolayers [J]. Langmuir, 2003, 19: 9271–9275.

    Article  Google Scholar 

  19. FENTER P, STURCHIO N C. Mineral–water interfacial structures revealed by synchrotron X-ray scattering [J]. Progress in Surface Science, 2004, 77: 171–258.

    Article  Google Scholar 

  20. WANG Jian, KALINICHEV A G, KIRKPATRICK R J. Effects of substrate structure and composition on the structure, dynamics, and energetics of water at mineral surfaces: A molecular dynamics modeling study [J]. Geochimica et Cosmochimica Acta, 2006, 70: 562–582.

    Article  Google Scholar 

  21. DU Hao, MILLER J D. A molecular dynamics simulation study of water structure and adsorption states at talc surfaces [J]. International Journal of Mineral Processing, 2007, 84: 172–184.

    Article  Google Scholar 

  22. BENLI B, DU Hao, CELIK M S. The anisotropic characteristics of natural fibrous sepiolite as revealed by contact angle, surface free energy, AFM and molecular dynamics simulation [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 408: 22–31.

    Article  Google Scholar 

  23. CHENG Fang, CAO Qin, GUAN Yun, WANG Xu, MILLER J D. FTIR analysis of water structure and its influence on the flotation of arcanite (K2SO4) and epsomite (MgSO4-7H2O) [J]. International Journal of Mineral Processing, 2013, 122: 36–42.

    Article  Google Scholar 

  24. NICKOLOV Z S, MILLER J D. Water structure in aqueous solutions of alkali halide salts: FTIR spectroscopy of the ODstretching band [J]. Journal of Colloid and Interface Science, 2005, 287: 572–580.

    Article  Google Scholar 

  25. PASHLEY R M. Hydration forces between mica surfaces in aqueous electrolyte solutions [J]. Journal of Colloid and Interface Science, 1981, 80: 153–162.

    Article  Google Scholar 

  26. PASHLEY R M. Hydration forces between mica surfaces in electrolyte solution [J]. Advances in Colloid and Interface Science, 1982, 16: 57–62.

    Article  Google Scholar 

  27. YOON R H, VIVEK S. Effects of short-chain alcohols and pyridine on the hydration forces between silica surfaces [J]. Journal of Colloid and Interface Science, 1998, 204(1): 179–186.

    Article  Google Scholar 

  28. VALLE-DELGADO J J, MOLINA-BOLIVAR J A, GALISTEO-GONZALEZ F, GALVEZ-RUIZ M J, FEILER A, RUTLAND M W. Hydration forces between silica surfaces: Experimental data and predictions from different theories [J]. The Journal of Chemical Physics, 2005, 123(3): 21–33.

    Article  Google Scholar 

  29. PENG Cheng, SONG Shao. Determination of thickness of hydration layers on mica in aqueous solutions by using AFM [J]. Surface Review and Letters, 2004, 11(6): 485–489.

    Article  Google Scholar 

  30. PENG Cheng, SONG Shao, GU Qing. Determination of hydration film thickness using atomic force microscopy [J]. Chinese Science Bulletin, 2005, 50(4): 299–304.

    Article  Google Scholar 

  31. WANG Hui, CHEN Li, FU Jian, HAO Ye. Interface thermodynamics of molybdenite floatation system [J]. Journal of Central South University, 2007, 38(5): 893–899. (in Chinese)

    Google Scholar 

  32. MOHAMMADI-JAM S, BURNETT D J, WATERS K E. Surface energy of minerals–Applications to flotation [J]. Minerals Engineering, 2014, 66–68: 112–118.

    Article  Google Scholar 

  33. NGUYEN A V, NALASKOWSKI J, MILLER J D. A study of bubble–particle interaction using atomic force microscopy [J]. Minerals Engineering, 2003, 16: 1173–1181.

    Article  Google Scholar 

  34. ASSEMI S, NGUYEN A V, MILLER J D. Direct measurement of particle–bubble interaction forces using atomic force microscopy [J]. International Journal of Mineral Processing, 2008, 89: 65–70.

    Article  Google Scholar 

  35. REN Si, MASLIYAH J, XU Zheng. Studying bitumen–bubble interactions using atomic force microscopy [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 444: 165–172.

    Article  Google Scholar 

  36. RAICHUR A M, WANG X H, PAREKH B K. Estimation of surface free energy of pyrites by contact angle measurements [J]. Minerals Engineering, 2001, 14(1): 65–75.

    Article  Google Scholar 

  37. VAN-OSS C J, CHAUDHURY M K, GOOD R J. Mechanism of partition in aqueous media [J]. Separation Science and Technology, 1987, 22(6): 1515–1526.

    Article  Google Scholar 

  38. VAN-OSS C J, GOOD R J, CHAUDHURY M K. Estimation of the polar surface tension parameters of glycerol and formamide, for use in contact angle measurements on polar solids [J]. Journal of Dispersion Science and Technology, 1990, 11(1): 75–81.

    Article  Google Scholar 

  39. VAN-OSS C J, GOOD R J, CHAUDHURY M K. The role of van der Waals forces and hydrogen bonds in “hydrophobic interactions” between biopolymers and low energy surfaces [J]. Journal of Colloid and Interface Science, 1986, 111: 378–390.

    Article  Google Scholar 

  40. VOELKEL A, STRZEMIECKA B, ADAMSKA K, MILCZEWSKA K. Inverse gas chromatography as a source of physiochemical data [J]. Journal of Chromatography A, 2009, 1216: 1551–1566.

    Article  Google Scholar 

  41. ZOU Wen, CAO Yi, LIU Jiong, LI Wei, LIU Chang. Wetting process and surface free energy components of two fine liberated middling bituminous coals and their flotation behaviors [J]. Powder Technology, 2013, 246: 669–676.

    Article  Google Scholar 

  42. SCHULTZ J, LAVIELLE L, MARTIN C. The role of the interface in carbon fibre-epoxy composites [J]. The Journal of Adhesion, 1987, 23: 45–60.

    Article  Google Scholar 

  43. ALI S S M, HENG J Y Y, NIKOLAEV A A, WATERS K E. Introducing inverse gas chromatography as a method of determining the surface heterogeneity of minerals for flotation[J]. Powder Technology, 2013, 249: 373–377.

    Article  Google Scholar 

  44. FAN Gui, CAO Yi, ZHANG Feng. Investigation on the surface wettability and surface free energy of micro fine ilmenite and titanaugite [J]. Journal of China University of Mining & Technology, 2014, 43(6): 1051–1057. (in Chinese)

    Google Scholar 

  45. HOYSE L. Surface free energy and floatability of low-rank coal [J]. Fuel, 1996, 75(6): 737–742.

    Article  Google Scholar 

  46. ESPINOSA-JIMENEZ M, ONTIVEROS-ORTEGA A, GIMENEZ-MARTIN E. Surface energetics of the adsorption process of a cationic dye on leacril fabrics [J]. Journal of Colloid and Interface Science, 1997, 194(2): 419–426.

    Article  Google Scholar 

  47. ESPINOSA-JIMENEZ M, GIMENEZ-MARTIN E, ONTIVEROS-ORTEGA A. Effect of tannic acid on the ζ potential, sorption and surface free energy in the process of dyeing of leacril with a cationic dye [J]. Journal of Colloid and Interface Science, 1998, 207(1): 170–179.

    Article  Google Scholar 

  48. WU Wen, GIESE R F, VAN-OSS C J. Stability versus flocculation of particle suspensions in water: Correlation with the extended DLVO approach for aqueous systems, compared with classical DLVO theory [J]. Colloids and Surfaces B: Biointerfaces, 1999, 14(1–4): 47–55.

    Google Scholar 

  49. AHMED N, JAMESON G J. Flotation kinetics [J]. Mineral Processing and Extractive Metallurgy Review, 1989, 5: 77–99.

    Article  Google Scholar 

  50. YOON R H, MAO Lai. Application of extended DLVO theory, IV–derivation of flotation rate equation from first principles [J]. Journal of Colloid and Interface Science, 1996, 181: 613–626.

    Article  Google Scholar 

  51. VAN-OSS C J, GIESE R F. The hydrophilicity and hydrophobicity of clay minerals [J]. Clays and Clay Minerals, 1995, 43: 474–477.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia-hui Gui  (桂夏辉).

Additional information

Foundation item: Project(2014BAB01B03) supported by the National Key Technology R&D Program During the 12th Five-Yean Plan of China; Project(51774286) supported by the National Natural Science Foundation of China; Project(BK20150192) supported by the Natural Science Foundation of Jiangsu Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xing, Yw., Gui, Xh. & Cao, Yj. Hydration film measurement on mica and coal surfaces using atomic force microscopy and interfacial interactions. J. Cent. South Univ. 25, 1295–1305 (2018). https://doi.org/10.1007/s11771-018-3826-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3826-4

Key words

关键词

Navigation