Skip to main content
Log in

Evaluation on prediction abilities of constitutive models considering FEA application

考虑有限元应用的本构模型预测能力评估

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Constitutive model plays an important role in the numerical simulations of metal forming. However, the influence of the models on the calculation is vague. Based on the stress-strain data of Al 7050 and Ti-6Al-4V alloys generated by isothermal compressive tests, the Johnson-Cook (JC) and Arrhenius-type (A-type) hyperbolic sine models were fitted to obtain the constants. Flow stresses directly calculated by the equations were compared with the experiment results, and rigid-plastic finite element analyses (FEA) utilizing these models were employed to simulate the same compression processes. The results show that A-type model has higher accuracy in the direct prediction of flow stress, even outside of the fit domain. The simulation results using A-type model also have higher agreement with the experiment; however, the suitability is affected by the referential parameters employed in the regression process. In terms of the overall deformation and strain distributions, there are slight differences among the simulation results using these two models.

摘要

本构模型在金属塑性成形数值模拟中扮演着重要角色,然而其对计算的影响仍不明确。本文基 于Al 7050 和Ti-6Al-4V 合金的等温压缩实验应力-应变曲线,对Johnson-Cook (JC)以及Arrhenius-type (A-type) 双曲正弦模型进行了拟合并得到表达式;将应用2 个方程直接预测的流动应力与实验结果进 行比较,同时利用刚塑性有限元数值方法对热压缩过程进行模拟,发现对于实验数据的直接预测, A-type 模型的预测精度高于JC 模型的,对拟合数据以外的实验数据也一样。从数值模拟结果来看, 利用A-type 模型的计算结果与实验更加吻合,但吻合程度受拟合所采用参考参数的影响;从模拟得到 的整体变形和应变分布来看,利用2 种模型的结果差别不大。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WEN Tong, YUE Yuan-wang, LIU Lan-tao, YU Jian-ming. Evaluation and prediction of hot rheological properties of Ti-6Al-4V in dual-phase region using processing map and artificial neural network [J]. Indian Journal of Engineering & Materials Sciences, 2014, 21(12): 647–656.

    Google Scholar 

  2. LIANG R, KHAN A S. A critical review of experimental results and constitutive models for BCC and FCC metals over a wide range of strain rates and temperatures [J]. International Journal of Plasticity, 1999, 15(9): 963–980.

    Article  MATH  Google Scholar 

  3. SCHULZE V, VÖHRINGER O. A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures [C]//Proceedings of the 7th International Symposium on Ballistics. 1983: 41–47.

    Google Scholar 

  4. PRAWOTO Y, FANONE M, SHAHEDI S, ISMAIL M S, WAN NIK W B. Computational approach using Johnson-Cook model on dual phase steel [J]. Computational Materials Science, 2012, 54(3): 48–55.

    Article  Google Scholar 

  5. ZERILLI F J, ARMSTRONG R W. Dislocationmechanics-based constitutive relations for material dynamics calculations [J]. Journal of Applied Physics, 1987, 61(5): 1816–1825.

    Article  Google Scholar 

  6. LI H Y, WANG X F, LIU J J, WU Y. A comparative study on modified Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict the hot deformation behavior in 28CrMnMoV steel [J]. Materials & Design, 2013, 49(8): 493–501.

    Article  Google Scholar 

  7. SAMANTARAY D, MANDAL S, BORAH U, BHADURI A K, SIVAPRASAD P V. A thermo-viscoplastic constitutive model to predict elevated-temperature flow behaviour in a titanium-modified austenitic stainless steel [J]. Materials Science and Engineering A, 2009, 526(1, 2): 1–6.

    Article  Google Scholar 

  8. SUNG J H, KIM J H, WAGONER R H. A plastic constitutive equation incorporating strain, strain-rate, and temperature [J]. International Journal of Plasticity, 2010, 26(12): 1746–1771.

    Article  MATH  Google Scholar 

  9. PARSA M H, OHADI D. A constitutive equation for hot deformation range of 304 stainless steel considering grain sizes [J]. Materials & Design, 2013, 52(12): 412–421.

    Article  Google Scholar 

  10. KOCKS U F. Realistic constitutive relations for metal plasticity [J]. Materials Science and Engineering A, 2001, 317(1): 181–187.

    Article  Google Scholar 

  11. ZHOU M, CLODE M P. Constitutive equations for modelling flow softening due to dynamic recovery and heat generation during plastic deformation [J]. Mechanics of Materials, 1998, 27(2): 63–76.

    Article  Google Scholar 

  12. CAI M C, NIU L S, MA X F, SHI H J. A constitutive description of the strain rate and temperature effects on the mechanical behavior of materials [J]. Mechanics of Materials, 2010, 42(8): 774–781.

    Article  Google Scholar 

  13. GUPTA A K, KRISHNAMURTHY H N, SINGH Y, PRASAD K M, SINGH S K. Development of constitutive models for dynamic strain aging regime in Austenitic stainless steel 304 [J]. Materials & Design, 2013, 45(3): 616–627.

    Article  Google Scholar 

  14. MIRZADEH H, CABRERA J M, NAJAFIZADEH A. Constitutive relationships for hot deformation of austenite [J]. Acta Materialia, 2011, 59(16): 6441–6448.

    Article  Google Scholar 

  15. LIN Y C, CHEN M S, ZHONG J. Effect of temperature and strain rate on the compressive deformation behavior of 42CrMo steel [J]. Journal of Materials Processing Technology, 2008, 205(1): 308–315.

    Article  Google Scholar 

  16. LIN Y C, CHEN X M. A combined Johnson-Cook and Zerilli-Armstrong model for hot compressed typical high-strength alloy steel [J]. Computational Materials Science, 2010, 49(3): 628–633.

    Article  Google Scholar 

  17. SALEM A A, KALIDINDI S R, SEMIATIN S L. Strain hardening due to deformation twinning in a-titanium: Constitutive relations and crystal-plasticity modeling [J]. Metallurgical & Materials Transactions A, 2006, 37(1): 259–268.

    Article  Google Scholar 

  18. GUPTA A K, ANIRUDH V K, SINGH S K. Constitutive models to predict flow stress in Austenitic Stainless Steel 316 at elevated temperatures [J]. Materials & Design, 2013, 43(1): 410–418.

    Article  Google Scholar 

  19. ROHR I, NAHME H, THOMA K, ANDERSON C E. Material characterisation and constitutive modelling of a tungsten-sintered alloy for a wide range of strain rates [J]. International Journal of Impact Engineering, 2008, 35(8): 811–819.

    Article  Google Scholar 

  20. WU H Y, YANG J C, ZHU F J, WU C T. Hot compressive flow stress modeling of homogenized AZ61 Mg alloy using strain-dependent constitutive equations [J]. Materials Science and Engineering A, 2013, 574(7): 17–24.

    Article  Google Scholar 

  21. CHANGIZIAN P, ZAREI-HANZAKI A, ROOSTAEI A A. The high temperature flow behavior modeling of AZ81 magnesium alloy considering strain effects [J]. Materials & Design, 2012, 39(8): 384–389.

    Article  Google Scholar 

  22. ROY M J, MAIJER D M, DANCOINE L. Constitutive behavior of as-cast A356 [J]. Materials Science and Engineering A, 2012, 548(6): 195–205.

    Article  Google Scholar 

  23. SUN C, LIU G, ZHANG Q, LI R, WANG L. Determination of hot deformation behavior and processing maps of IN 028 alloy using isothermal hot compression test [J]. Materials Science and Engineering A, 2014, 595(2): 92–98.

    Article  Google Scholar 

  24. WANG L, LIU F, ZUO Q, CHEN C F. Prediction of flow stress for N08028 alloy under hot working conditions [J]. Materials & Design, 2013, 47(5): 737–745.

    Article  Google Scholar 

  25. SAMANTARAY D, MANDAL S, BHADURI A K. A comparative study on Johnson-Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr-1Mo steel [J]. Computational Materials Science, 2009, 47(2): 568–576.

    Article  Google Scholar 

  26. HE A, XIE G, ZHANG H, WANG X. A comparative study on Johnson-Cook, modified Johnson-Cook and Arrhenius-type constitutive models to predict the high temperature flow stress in 20CrMo alloy steel [J]. Materials & Design, 2013, 52(12): 677–685.

    Article  Google Scholar 

  27. JI G, LI F, LI Q, LI H, LI Z. A comparative study on Arrhenius-type constitutive model and artificial neural network model to predict high-temperature deformation behaviour in Aermet100 steel [J]. Materials Science and Engineering A, 2011, 528(13, 14): 4774–4782.

    Article  Google Scholar 

  28. LI H Y, WANG X F, WEI D D, HU J D, LI Y H. A comparative study on modified Zerilli-Armstrong, Arrhenius-type and artificial neural network models to predict high-temperature deformation behavior in T24 steel [J]. Materials Science and Engineering A, 2012, 536(2): 216–222.

    Article  Google Scholar 

  29. GUPTA A K, SINGH S K, REDDY S, HARIHARAN G. Prediction of flow stress in dynamic strain aging regime of austenitic stainless steel 316 using artificial neural network [J]. Materials & Design, 2012, 35(3): 589–595.

    Article  Google Scholar 

  30. MANDAL S, RAKESH V, SIVAPRASAD P V, VENUGOPAL S, KASIVISWANATHAN K V. Constitutive equations to predict high temperature flow stress in a Ti-modified austenitic stainless steel [J]. Materials Science and Engineering A, 2009, 500(1, 2): 114–121.

    Article  Google Scholar 

  31. TIAN Y, HUANG L, MA H, LI J. Establishment and comparison of four constitutive models of 5A02 aluminium alloy in high-velocity forming process [J]. Materials & Design, 2014, 54(2): 587–597.

    Article  Google Scholar 

  32. HOSFORD W F, CADDELL R M. Metal forming-Mechanics and Metallurgy [M]. New York: Cambridge University Press, 2007.

    Book  Google Scholar 

  33. LIN Y C, CHEN M S, ZHONG J. Numerical simulation for stress/strain distribution and microstructural evolution in 42CrMo steel during hot upsetting process [J]. Computational Materials Science, 2008, 43(4): 1117–1122.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Wen  (温彤).

Additional information

Foundation item: Project(2012ZX04010-81) supported by the National Key Technology R&D Program of China; Project (51575066) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, T., Liu, Lt., Huang, Q. et al. Evaluation on prediction abilities of constitutive models considering FEA application. J. Cent. South Univ. 25, 1251–1262 (2018). https://doi.org/10.1007/s11771-018-3822-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3822-8

Key words

关键词

Navigation