Skip to main content
Log in

Numerical study of RC beams under various loading rates with LS-DYNA

不同加载速率下钢筋混凝土梁的LS-DYNA 数值研究

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Having an accurate understanding of concrete behavior under effects of high strain rate loading with the aim of reducing incurred damages is of great importance. Due to complexities and high costs of experimental research, numerical studies can be an appropriate alternative for experimental methods. Therefore, in this research capability of the finite element method for predicting concrete behavior at various loading conditions is evaluated by LS-DYNA software. First, the proposed method is presented and then is validated in three stages under different conditions. Results of load—midspan displacement showed good agreement between experimental and finite element results. Capability of finite element method in analyses of beams under various rates of loading was also validated by low error of the results. In addition, the proposed method has reasonable ability to evaluate reinforced concrete beams under various loading rates and different conditions.

摘要

准确认识高应变率荷载作用下混凝土的受力性能以减少损伤的发生具有重要意义。由于实验研 究的复杂性和较高的成本,数值研究是适合的方法。因此,本文采用LS-DYNA 软件对有限元法在不 同荷载作用下预测混凝土性能的能力进行评价。首先,给出该方法;然后,在不同条件下分3 个阶段 进行验证。荷载—跨中位移的计算结果表明,试验结果与有限元结果吻合较好。利用有限元方法对不 同载荷作用下的梁进行分析,验证有限元方法在不同载荷下的受力分析能力。此外,该方法对不同加 载速率、不同加载条件下钢筋混凝土梁的性能也具有较好的评价能力。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. ZHAO H, GARY G. On the use of SHPB techniques to determine the dynamic behavior of materials in the range of small strains [J]. International Journal of Solids and Structures, 1996, 33: 3363–3375. DOI: 10.1016/0020-7683(95)00186-7.

    Article  MATH  Google Scholar 

  2. LU Y, LI Q. Appraisal of pulse-shaping technique in Split Hopkinson pressure bar tests for brittle materials [J]. International Journal of Protective Structures, 2010, 23: 363–390. DOI: 10.1260/2041-4196.1.3.363.

    Article  Google Scholar 

  3. LI X, WANG S, WENG L, HUANG L, ZHOU T, ZHOU J. Damage constitutive model of different age concretes under impact load [J]. Journal of Central South University, 2015, 22: 693–700. DOI:10.1007/s11771-015-2572-0.

    Article  Google Scholar 

  4. FREW D J, FORRSTAL M J, CHEN W. Pulse shaping techniques for testing brittle materials with a split hopkinson pressure [J]. Bar Experimental Mechanics, 2002, 42: 93–106. DOI: 10.1007/BF02411056.

    Article  Google Scholar 

  5. YAN D, LIN G. Dynamic properties of concrete in direct tension [J]. Cement and Concrete Research, 2006, 36: 1371–1378. DOI: 10.1016/j.cemconres.2006.03.003.

    Article  Google Scholar 

  6. BISCHOFF P, PERY S. Compressive behaviour of concrete at high strain rates [J] Materials and Structures, 1991, 24: 425–450. DOI: 10.1007/BF02472016.

    Article  Google Scholar 

  7. KULKARNI S M, SHAH S P. Response of RC beams at high strain rates [J]. ACI Structural Journal, 1998, 95: 705–715. https://www.scholars.northwestern.edu/en/publications/response-of-reinforced-concrete-beams-at-high-strain-rates.

    Google Scholar 

  8. REMENNIKOV A, KAEWUNRUEN S. Impact resistance of RC columns: Experimental studies and design considerations [C]// 19th Australasian Conference on the Mechanics of Structures and Materidls. Christchurch, New Zealand: Tailor & Francis, 2007: 817–824.

    Google Scholar 

  9. HUGHES G, SPEIRS D M, CEMENT A. Concrete, an investigation of the beam impact problem [M]. Wexham Springs, Slough: Cement and Concrete Association, 1982.

    Google Scholar 

  10. WEERHEIJM J, VAN DOORMAAL J. Tensile failure of concrete at high loading rates: New test data on strength and fracture energy from instrumented spalling tests [J]. International Journal of Impact Engineering, 2007, 34: 609–626. DOI: 10.1016/j.ijimpeng.2006.01.005.

    Article  Google Scholar 

  11. TACHIBANA S, MASUYA H, NAKAMURA S. Performance based design of RC beams under impact [J]. Natural Hazards and Earth System Science, 2010, 10: 1069–1078. DOI: 10.5194/nhess-10-1069-2010.

    Article  Google Scholar 

  12. SAATCI S, VECCHIO F J. Effects of shear mechanisms on impact behavior of RC beams [J]. ACI Structural Journal, 2009, 106: 78–86. https://search.proquest.com/openview/cb6c52d186d6d9bb4700e846d5af20e4/1?pq-origsite=gscholar&cbl=36963..

    Google Scholar 

  13. FUJIKAKE K, LI B, SOEUN S. Impact response of RC beam and its analytical evaluation [J]. Journal of Structural Engineering, 2009, 135: 938–950. https://ascelibrary.org/doi/abs/10.1061/(ASCE)ST.1943-541X.0000039.

    Article  Google Scholar 

  14. ADHIKARY S D, LI B, FUJIKAKE K. Dynamic behavior of RC beams under varying rates of concentrated loading [J]. International Journal of Impact Engineering, 2012, 47: 24–38. DOI: 10.1016/j.ijimpeng.2012.02.001.

    Article  Google Scholar 

  15. XIAO S, CAO W, PAN H. Experiment of reinforced concrete beams at different loading rates [C]// 15th World Conference on Earthquake Engineering, 2012.

    Google Scholar 

  16. GOLSTON M, REMENNIKOV A, ShEIKH M N. Experimental investigation of the behaviour of concrete beams reinforced with GFRP bars under static and impact loading [J]. Engineering Structures, 2016, 113: 220–232. DOI: 10.1016/j.engstruct.2016.01.044.

    Article  Google Scholar 

  17. QASRAWI Y, HEFFERNAN P J, FAM A. Dynamic behaviour of concrete filled FRP tubes subjected to impact loading [J]. Engineering Structures, 2015, 100: 212–225. DOI: 10.1016/j.engstruct.2015.06.012.

    Article  Google Scholar 

  18. HALLQUIST J O. LS-DYNA keyword user’s manual: Volume II material model [M]. Livermore Software Technology Corporation (LSTC), 2014.

    Google Scholar 

  19. BRANNON R M, LEELAVANICHKUL S. Survey of four damage models for concrete [R]. Prod Sandia Gov, 2009: 1–80. DOI: 10.2172/993922.

    Google Scholar 

  20. CRAWFORD J E, WU Y, CHOI H, MAGALLANES J M, LAN S. Use and validation of the release III K&C concrete material model in LS-DYNA [M]. Glendale: Karagozian Case, 2012.

    Google Scholar 

  21. TU Z, LU Y. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36: 132–146. DOI: 10.1016/j.ijimpeng.2007.12.010.

    Article  Google Scholar 

  22. WU Y, CRAWFPRD J E, MAGALLANES J M. Performance of LS-DYNA concrete constitutive models [C]// 12th International LS-DYNA Users Conference, 2012.

    Google Scholar 

  23. MALVAR J. Simplified concrete modeling with* Mat-Concrete-Damage-Rel3 [M]. 2005: 49–60. http://roadsafellc.com/NCHRP22-24/Literature/Papers/SIMPLIFIED%20CONCRETE%20MODELING%20WITH%20MAT_CONCRET_DAMAGE_REL3.pdf.

    Google Scholar 

  24. HANSSON P S H. Simulation of concrete penetration in 2D and 3D with the RHT material model [M]. Swedish Defense Research Agency, 2002.

    Google Scholar 

  25. ZHENGUO T, YONG L. Evaluation of typical concrete material models used in hydrocodes for high dynamic response simulations [J]. International Journal of Impact Engineering, 2009, 36: 132–146. DOI: 10.1016/j.ijimpeng.2007.12.010.

    Article  Google Scholar 

  26. COTSOVOS D, PAVLOVIC M. Numerical investigation of concrete subjected to high rates of uniaxial tensile loading [J]. International Journal of Impact Engineering, 2008, 35: 319–335. DOI: 10.1016/j.ijimpeng.2007.03.006.

    Article  Google Scholar 

  27. RIISGAARD B, NGO T, MENDIS P, GEORGAKIS C, STANG H. Dynamic increase factors for high performance concrete in compression using split Hopkinson pressure bar [C]// 6th International Conference on Fracture Mechanics of Concrete and Concrete Structures, 2007. https://scholar.google.com/scholar?hl=en&as_sdt=0%2C5&as_vis=1&q=Dynamic+increase+factors+for+high+performance+concrete+in+compression+using+split+hopkinson+pressure+bar&btnG=..

    Google Scholar 

  28. ABBASNIA R, MOHAJERI F, RASHIDIAN O, USEFI N. Theoretical resistance of rc frames under the column removal scenario considering high strain rates [J]. Journal of Performance of Constructed Facilities (ASCE), 2016, 30(5). DOI: 10.1061/(ASCE)CF.1943-5509.0000867.

    Google Scholar 

  29. ASPRONE D, FRASCADORE R, DI LUDOVICO M, PROTA A, MANFREDI G. Influence of strain rate on the seismic response of RC structures [J]. Engineering Structures, 2012, 35: 29–36. DOI: org/10.1016/j.engstruct.2011.10.025.

    Article  Google Scholar 

  30. CARTA G, STOCHINO F. Theoretical models to predict the flexural failure of RC beams under blast loads [J]. Engineering Structures, 2013, 49: 306–315. DOI: 10.1016/j.engstruct.2012.11.008.

    Article  Google Scholar 

  31. MIN F, YAO Z, JIANG T. Experimental and numerical study on tensile strength of concrete under different strain rates [J]. The Scientific World Journal, 2014, 2014(11): 173531. DOI: 10.1155/2014/173531.

    Google Scholar 

  32. MALVAR L J, ROSS C A. Review of strain rate effects for concrete in tension [J]. Materials Journal, 1998, 95: 735–739. https://www.researchgate.net/publication/280015460_A_Review_of_Strain_Rate_Effects_for_Concrete_in_TensionJ.

    Google Scholar 

  33. MALVAR L J, CRAWFORD J E. Dynamic increase factors for steel reinforcing bars [M]. https://www.researchgate.net/publication/235099732_Dynamic_Increase_Factors_for_Steel_Reinforcing_Bars

  34. CEB-FIP Code 1990: Design code [M]. Thomas Telford, 1993.

  35. USEFI N, MOHAJERI F, ABBASNIA R. Finite Element analysis of RC elements in progressive collapse scenario [J]. Gradevinar, 2016, 68: 1009–1022. DOI: 10.14256/JCE.1550. 2016.

    Google Scholar 

  36. MOHAJERI F, USEFI N, ABBASNIA R. Analytical investigation of reinforced concrete frames under middle column removal scenario [J]. Advances in Structural Engineering, 2017. https://doi.org/10.1177/1369433217746343.

    Google Scholar 

  37. ABBASNIA R, MOHAJERI NAV F, USEFI N. A new method for progressive collapse analysis of RC frames [J]. Structural Engineering and Mechanics, 2016, 60(1): 31–50. DOI: 10.12989/sem.2016.60.1.031.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leila Majidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majidi, L., Usefi, N. & Abbasnia, R. Numerical study of RC beams under various loading rates with LS-DYNA. J. Cent. South Univ. 25, 1226–1239 (2018). https://doi.org/10.1007/s11771-018-3820-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3820-x

Key words

关键词

Navigation