Journal of Central South University

, Volume 25, Issue 5, pp 1154–1164 | Cite as

N-PD cross-coupling synchronization control based on adjacent coupling error analysis

  • Yan-jie Liu (刘延杰)
  • Le Liang (梁乐)
  • Ting-ting Chu (储婷婷)
  • Ming-yue Wu (吴明月)


In order to improve the trajectory tracking precision and reduce the synchronization error of a 6-DOF lightweight robot, nonlinear proportion-deviation (N-PD) cross-coupling synchronization control strategy based on adjacent coupling error analysis is presented. The mathematical models of the robot, including kinematic model, dynamic model and spline trajectory planing, are established and verified. Since it is difficult to describe the real-time contour error of the robot for complex trajectory, the adjacent coupling error is analyzed to solve the problem. Combined with nonlinear control and coupling performance of the robot, N-PD cross-coupling synchronization controller is designed and validated by simulation analysis. A servo control experimental system which mainly consists of laser tracking system, the robot mechanical system and EtherCAT based servo control system is constructed. The synchronization error is significantly decreased and the maximum trajectory error is reduced from 0.33 mm to 0.1 mm. The effectiveness of the control algorithm is validated by the experimental results, thus the control strategy can improve the robot’s trajectory tracking precision significantly.

Key words

mathematical model of robot adjacent coupling error nonlinear PD control synchronization control trajectory tracking accuracy 

一种基于相邻耦合误差分析的非线性PD 偏差耦合同步控制方法


为了提高六自由度轻量型机器人的轨迹跟踪精度同时减小其同步误差,提出一种基于相邻耦合 误差分析的非线性PD偏差耦合同步控制方法。建立并验证了该机器人的数学模型,包括运动学模型、 动力学模型以及样条轨迹规划。因为难以描述复杂轨迹下的机器人实时轮廓误差,因此本文引入相邻耦合误差来解决这一问题。结合机器人非线性控制以及耦合特性,设计了非线性PD 偏差耦合同步控 制器,并通过仿真分析进行验证。伺服控制试验系统由激光跟踪系统、机器人机械系统以及基于 EtherCAT 通讯的伺服控制系统构成,实验数据表明,该控制方法可使机器人同步误差大幅度减小,并且最大跟踪误差由0.33 mm 缩减到0.1 mm。实验结果验证了控制算法的有效性,从而证明了该控制 策略能够有效改善机器人的轨迹跟踪精度。


机器人数学模型 相邻耦合误差 非线性PD 控制 同步控制 轨迹跟踪精度 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    CHENG H M, MITRA A, CHEN Cheng-yi. Synchronization controller synthesis of multi-axis motion system [C]// International Conference on Innovative Computing. 2009: 918–921.Google Scholar
  2. [2]
    KOREN Y. Cross-coupled biaxial computer controls for manufacturing systems [J]. Journal of Dynamic Systems Measurement & Control, 1980, 102(4): 265–272.CrossRefzbMATHGoogle Scholar
  3. [3]
    FANG Ren-wu, CHEN Jian-shiang. Cross-coupling control for a direct-drive robot [J]. JSME International Journal, 2002, 45(3): 749–757.CrossRefGoogle Scholar
  4. [4]
    PEREZ-PINAL F J, NUNEZ C, ALVAREZ R. Comparison of multi-motor synchronization techniques [C]// Industrial Electronics Society, Conference of IEEE. 2004(2): 1670–1675.Google Scholar
  5. [5]
    SUN D, MILLS J K. Adaptive synchronized control for coordination of multirobot assembly tasks [J]. IEEE Transactions on Robotics & Automation, 2002, 18(4): 498–510.CrossRefGoogle Scholar
  6. [6]
    ALONGE F, D' IPPOLITO F, RAIMONDI F M. Globally convergent adaptive and robust control of robotic manipulators for trajectory tracking [J]. Control Engineering Practice, 2004, 12(9): 1091–1100.CrossRefGoogle Scholar
  7. [7]
    YANG Ning-jia, DUAN Feng, WEI Yu-di, LIU Chuang, TAN T C, XU Bin-bin, ZHANG Jin. A study of the human-robot synchronous control system based on skeletal tracking technology [C]// IEEE International Conference on Robotics and Biomimetics. 2013: 2191–2196.Google Scholar
  8. [8]
    GAMS A, UDE A, MORIMOTO J. Accelerating synchronization of movement primitives: Dual-arm discreteperiodic motion of a humanoid robot [C]// IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2015.Google Scholar
  9. [9]
    LIU Juan-xiu, WU Yi-fei, GUO Jian, CHEN Qing-wei. High-order sliding mode-based synchronous control of a novel stair-climbing wheelchair robot [J]. Journal of Control Science & Engineering, 2015, 2015(46): 1–16.MathSciNetzbMATHGoogle Scholar
  10. [10]
    GU Kai, CAO Qi-xin. Control system design of 6-DOFs serial manipulator based on real-time Ethernet [C]// IEEE International Conference on Information and Automation. 2014: 118–120.Google Scholar
  11. [11]
    GUO Kun, LI Shao-yuan, HUANG D. Real-time quadruped robot control system based on Xenomai [C]// Chinese Automation Congress. IEEE, 2015: 342–347.Google Scholar
  12. [12]
    CHOI T, DO H, PARK D, PARK C, KYUNG J. Real-time synchronisation method in multi-robot system [J]. Electronics Letters, 2014, 50(24): 1824–1826.CrossRefGoogle Scholar
  13. [13]
    LI Tian, SUN Kui, XIE Zong-wu, LIU Hong. Optimal measurement configurations for kinematic calibration of six-DOF serial robot [J]. Journal of Central South University of Technology, 2011, 18(3): 618–626.CrossRefGoogle Scholar
  14. [14]
    YOU Wei, KONG Min-xiu, SUN Li-ning, DU Zhi-jiang. Optimal design of dynamic and control performance for planar manipulator [J]. Journal of Central South University, 2012, 19(1): 108–116.CrossRefGoogle Scholar
  15. [15]
    ZHANG Dai-lin, ZHANG Xu, XIE Jing-ming, YUAN Chu-ming, CHEN You-ping, TANG Yang-ping. Contouring error modeling and simulation of a four-axis motion control system [J]. Journal of Central South University, 2015, 22(1): 141–149.CrossRefGoogle Scholar
  16. [16]
    SUN D, TONG M C. A synchronization approach for the minimization of contouring errors of CNC machine tools [J]. IEEE Transactions on Automation Science & Engineering, 2009, 6(4): 720–729.MathSciNetCrossRefGoogle Scholar
  17. [17]
    LIU H H T, SUN D. Uniform synchronization in multi-axis motion control [C]// American Control Conference, 2005, Proceedings of the 2005. IEEE, 2005: 4537–4542.CrossRefGoogle Scholar
  18. [18]
    SUN D, SHAO Xiao-shao, FENG Geng. A model-free cross-coupled control for position synchronization of multi-axis motions: Theory and experiments [J]. IEEE Transactions on Control Systems Technology, 2005, 38(1): 1–6.Google Scholar
  19. [19]
    CROSS M C, ROGERS J L, LIFSHITZ R, ZUMDIECK A. Synchronization by reactive coupling and nonlinear frequency pulling [J]. Physical Review E: Statistical Nonlinear & Soft Matter Physics, 2006, 73(2): 80–98.MathSciNetGoogle Scholar
  20. [20]
    DENG W, LOW K S. Cross-coupled contouring control of a rotary based biaxial motion system [C]// International Conference on Control, Automation, Robotics and Vision. IEEE, 2006: 1–6.Google Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Robotics and SystemHarbin Institute of TechnologyHarbinChina
  2. 2.HIT-Boshi Research InstituteHarbin Boshi Automation Co., Ltd.HarbinChina

Personalised recommendations