Journal of Central South University

, Volume 25, Issue 5, pp 1099–1106 | Cite as

Neuron system shock superimposed response based on catastrophe dynamics

  • Bin Li (李斌)
  • Chao Chen (陈超)
  • Tuo Li (李拓)


With the rapid development of computer science and artificial intelligence technology, the complexity and intelligence of the neural network models constructed by people have been greatly improved. When the complex neuron system is subjected to the impact of “catastrophic”, its original characteristics may be changed, and the consequences are difficult to predict. Catastrophe dynamics mainly studies the source of the sudden violent change of nature and human society and its evolution. The impact of the system can be divided into endogenous and exogenous shocks. In this article, catastrophe theory is used to study the neuron system. Based on the mean field model of Hurst and Sornette, introducing the weight parameters, mathematical models are constructed to study the response characteristics of the neuron system in face of exogenous shocks, endogenous shocks, and integrated shocks. The time characteristics of the shock response of the neuron system are discussed too, such as the instantaneous and long-term response of the system in face of shocks, the different response forms according to the weight or linear superposition, and the influence of adjusting parameters on the neuron system. The research result shows that the authoritarian coefficient and weight coefficient have a very important influence on the response of neuron system; By adjusting the two coefficients, the purpose of disaster prevention, self-healing protection and response reducing can be well achieved.

Key words

neuron system catastrophe dynamics endogenous shock exogenous shock superimposed response 



随着计算机科学和人工智能技术的飞速发展,人们构建的神经网络模型的复杂性和智能性得到 了极大的提高。当复杂的神经元系统受到“灾变性”的冲击时,其原有特征可能发生变化,后果难以预 测。灾变动力学主要研究自然和人类社会突发剧烈变化的根源及其演变。系统所受到的冲击可分为内 生冲击和外生冲击。本文在神经元系统通用理论模型的基础上,引入灾变动力学理论展开了研究。基 于平均场模型,引入权重系数,建立起数学模型研究神经元系统在面临外生冲击、内生冲击、叠加冲 击时的响应特性,并进一步讨论了神经元系统冲击响应的时间特性,如系统面临冲击的瞬时和长期响 应,按权重或线性叠加时不同的响应形式,以及调节参数对神经元系统的影响。研究表明,独裁系数 和权重系数对神经元系统的响应有着非常重要的影响,对这两个系数进行调整,能很好地实现防灾、 自愈保护和减轻灾害的目的。


神经元系统 灾变动力学 内生冲击 外生冲击 叠加响应 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    KOCH C, SEGEY I. Methods in neuronal modeling: From ions to networks [M]. Cambridge: MIT Press, 1998: 50–55.Google Scholar
  2. [2]
    DAYAN P, ABBOTT L. Theoretical neuroscience: Computational and mathematical modeling of neural systems (computational neuroscience) [M]. Cambridge: MIT Press, 2002: 154–155.Google Scholar
  3. [3]
    SCHAAL S. The handbook of brain theory and neural networks [J]. Inorganica Chimica Acta, 2002, 82(1): 69–74.Google Scholar
  4. [4]
    RABINOVICH M L, VARONA P, SELVERSTON A L. Dynamical principles in neuroscience [J]. Reviews of Modem Physics, 2006, 78(4): 1213–1265.CrossRefGoogle Scholar
  5. [5]
    KANDEL E R, SCHWARTZ J H, JESSELL T M. Principles of neural science [M]. 4th edition. Wiley, 2001.Google Scholar
  6. [6]
    HODGKIN A L, HUXLEY A F. A quantitative description of membrane current and its applications to conduction and excitation in nerve [J]. Bulletin of Mathematical Biology, 1990, 52(1, 2): 25–71.CrossRefGoogle Scholar
  7. [7]
    FITZHUGH R. Thresholds and plateaus in the Hodgkin-Huxley nerve equations [J]. Journal of General Physiology, 1960, 43(5): 867–896.CrossRefGoogle Scholar
  8. [8]
    WIESENFELD K, PIERSON D, PANTAZELOU E. Stochastic resonance on a circle [J]. Physical Review Letters, 1994, 77(72): 2125–2129.CrossRefGoogle Scholar
  9. [9]
    TUCKWELL H C, RODRGUEZ R, WAN F Y M. Determination of firing times for the stochastic Fitzhugh-Nagumo neuronal model [J]. Neural Computation, 2003, 15(1): 143–159.CrossRefzbMATHGoogle Scholar
  10. [10]
    ACEBRON J A, BULSARA A R, RAPPEL W J. Noisy Fitzhugh-Nagumo model: From single elements to globally coupled networks [J]. Physical Review E, 2004, 69(2): 026202.MathSciNetCrossRefGoogle Scholar
  11. [11]
    KITAJIMA H, KURTHS J. Synchronized firing of FitzHugh–Nagumo neurons by noise [J]. Chaos An Interdisciplinary Journal of Nonlinear Science, 2005, 15(2): 23704.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    WANG Bao-yan. Synchronization of coupled FHN neurons under noise [J]. Journal of Xi’an Polytechnic University, 2011, 25(2): 232–238. (in Chinese)Google Scholar
  13. [13]
    YANG Ya-qiang, WANG Can-jun. Steady state characteries of Fitzhugh-Nagumo neural system subjected to two different kinds of colored noises [J]. Acta Physica Sinica, 2012, 61(12): 120507.Google Scholar
  14. [14]
    ZHAO Yan, XU Wei, ZOU Shao-cun. The steady state probability distribution and mean first passage time of FHN neural system driven by non-Gaussian noise [J]. Acta Physica Sinica, 2009, 58(3): 1396–1402.Google Scholar
  15. [15]
    LI Na, YANG Xiao-li. Synchronous dynamics of small-world neuronal network system with spatially correlated white noise [J]. Acta Physica Sinica, 2015, 64(22): 86–94. (in Chinese)Google Scholar
  16. [16]
    SORIIETTE D. Complexity, catastrophe and physics [J]. Physics World, 2015, 12(12): 57.CrossRefGoogle Scholar
  17. [17]
    MENEZES M A, BARABASI A L. Fluctuations in network dynamics [J]. Phys Rev Lett, 2004, 92(2): 028701.CrossRefGoogle Scholar
  18. [18]
    HELMSTETTER A, SORNETTE D, GRASSO J. Mainshocks are aftershocks of conditional foreshocks: How do foreshock statistical properties emerge from aftershock laws [J]. Journal of Geophysical Research Solid Earth, 2002, 108(B1): 20–24.Google Scholar
  19. [19]
    SORNETTE D, HELMSTETTER A. Endogenous versus exogenous shocks in systems with memory [J]. Physica A: Statistical Mechanics & its Applications, 2003, 318(3, 4): 577–591.CrossRefzbMATHGoogle Scholar
  20. [20]
    MANDELBROT B B, NESS J W V. Fractional brownian motions, fractional noises and applications [J]. Siam Review, 1968, 10(4): 422–437.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    HURST H. Long term storage capacities of reservoirs [J]. Transactions of the American Society of Civil Engineers, 1951, 116(12): 776–808.Google Scholar
  22. [22]
    SORNETTE D, MALEVERGNE Y, MUZY J F. What causes crashes? [J]. Risk, 2003, 16(2): 67–71.Google Scholar
  23. [23]
    SORNETTE D, ZHOU W X. Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets [J]. Physica A: Statistical Mechanics & Its Applications, 2005, 370(2): 704–726.CrossRefGoogle Scholar
  24. [24]
    HELMSTETTER A, SORNETTE D. Subcritical and supercritical regimes in epidemic models of earthquake aftershocks [J]. Journal of Geophysical Research Solid Earth, 2002, 107(B10): ESE10.Google Scholar
  25. [25]
    HUI Q, HADDAD W M, BAILEY J M. A stochastic mean field model for an excitatory and inhibitory synaptic drive cortical neuronal network [J]. IEEE Transactions on Neural Networks & Learning Systems, 2014, 25(4): 751–763.CrossRefGoogle Scholar
  26. [26]
    DI V M, BURIONI R, CASARTELLI M. Neural networks with excitatory and inhibitory components: Direct and inverse problems by a mean-field approach [J]. Physical Review E, 2015, 93(1): 012305.MathSciNetGoogle Scholar
  27. [27]
    ARGOLLOD M M, BARABASI A L. Separating internal and external dynamics of complex systems [J]. Physical Review Letters, 2004, 93(6): 068701.CrossRefGoogle Scholar
  28. [28]
    LIU An-feng, LIU Xiao, LI He. MDMA: A multi-data and multi-ACK verified selective forwarding attack detection scheme in WSNs [J]. IEICE Transactions on Information and Systems, 2016, 99(8): 2010–2018.CrossRefGoogle Scholar
  29. [29]
    POLO V, ANDRES J, BERSKI S. Understanding reaction mechanisms in organic chemistry from catastrophe theory applied to the electron localization function topology [J]. Journal of Physical Chemistry A, 2008, 112(31): 7128–7136.CrossRefGoogle Scholar
  30. [30]
    BELEJ M. Catastrophe theory in explaining price dynamics on the real estate market [J]. Real Estate Management and Valuation, 2013, 21(3): 51–61.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.College of Economics and TradeHunan UniversityChangshaChina

Personalised recommendations