Skip to main content
Log in

Effects of ceramsite on methane and hydrogen sulphide productions from macroalgae biomass

陶粒对巨藻厌氧发酵甲烷和硫化氢产量的影响

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The easy acidification and high hydrogen sulfide (H2S) production during anaerobic digestion of macroalgae limited its application in biomethane production. In order to investigate the effects of ceramsite on methane and H2S productions during anaerobic digestion of macroalgae, batch experiments of Macrocystis pyrifera were carried out. Four groups named C0, C1, C2 and C3 added with 0, 1.5, 3.0 and 4.5 g/gsubstrate of ceramsite, respectively, were studied and compared. The highest cumulative methane yield of 286.3 mL/gsubstrate is obtained in C2, which is 40.11% higher than that of C0. The cumulative H2S yields of C1, C2 and C3 are 32.67%, 44.66% and 53.21% lower than that of C0, respectively. Results indicate that ceramsite addition permits higher methane yields, shorter lag-phase time and lower H2S yields during anaerobic digestion of Macrocystis pyrifera.

摘要

巨藻厌氧发酵过程存在易酸化、硫化氢产量高的问题,大大限制了其在生物制甲烷方面的应用。 为了研究陶粒对巨藻厌氧发酵的甲烷和硫化氢生产的影响,开展了以巨藻Macrocystis pyrifera 生物质 为底物的批次发酵试验。实验分4 组,C0、C1、C2 和C3,分别添加了0、1.5、3.0、4.5 g/gsubstrate 的 陶粒。其中,C2 组得到了最高的甲烷累积产量,为286.3 mL/gsubstrate,比C0 组提高了40.11%。C1、 C2、C3 组的硫化氢累积产量分别比C0 降低了32.67%、44.66%、53.21%。结果显示,添加陶粒的巨 藻发酵体系甲烷产量提高、延滞期缩短、硫化氢产量降低。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. GOYAL H B, SEAL D, SAXENA R C. Bio-fuels from thermochemical conversion of renewable resources: A review [J]. Renewable and Sustainable Energy Reviews, 2008, 12(2): 504–517.

    Article  Google Scholar 

  2. DEMIRBAS A, DEMIRBAS M F. Importance of algae oil as a source of biodiesel [J]. Energy Conversion and Management, 2011, 52(1): 163–170.

    Article  Google Scholar 

  3. KONDA N V S N M, SINGH S, SIMMONS B A, KLEINMARCUSCHAMER D. An investigation on economic feasibility of macroalgae as a potential feedstock for biorefineries [J]. Bioenergy Research, 2015, 8(3): 1046–1056.

    Article  Google Scholar 

  4. GHPSH S, KLASS D L, CHYNOWETH D P. Bioconversion of macrocystis pyrifera to methane [J]. Journal of Chemical Technology and Biotechnology, 1981, 31(12): 791–807.

    Google Scholar 

  5. CHEN Hui-hui, ZHOU Dong, LUO Gang, ZHANG Shi-cheng, CHEN Jian-min. Macroalgae for biofuels production: Progress and perspectives [J]. Renewable and Sustainable Energy Reviews, 2015, 47: 427–437.

    Article  Google Scholar 

  6. DEBOWSKI M, ZIELINSKI M, GRALA A, DUDEK M. Algae biomass as an alternative substrate in biogas production technologies—Review [J]. Renewable and Sustainable Energy Reviews, 2013, 27: 596–604.

    Article  Google Scholar 

  7. JARD G, JACKOWIAK D, CARRERE H, DELGENES J P, TORRIJOS M, STEYER J P, DUMAS C. Batch and semi-continuous anaerobic digestion of Palmaria palmata: Comparison with Saccharina latissima and inhibition studies [J]. Chemical Engineering Journal, 2012, 209: 513–519.

    Article  Google Scholar 

  8. FAN Xiao-lei, GUN Rong-bo, YUAN Xian-zheng, QIU Yan-ling, YANG Zhi-man, WANG Fei, SUN Meng-ting, ZHAO Xiao-xian. Biogas production from Macrocystis pyrifera biomass in seawater system [J]. Bioresource Technology, 2015, 197: 339–347.

    Article  Google Scholar 

  9. YAZDANI P, ZAMANI A, KARIMI K, TAHERZADEH M J. Characterization of Nizimuddinia zanardini macroalgae biomass composition and its potential for biofuel production [J]. Bioresource Technology, 2015, 176: 196–202.

    Article  Google Scholar 

  10. BRUHN A, DAHL J, NIELSEN H B, NIKOLAISEN L, RASMUSSEN M B, MARKAGER S, OLESEN B, ARIAS C, JENSEN P D. Bioenergy potential of Ulva lactuca: Biomass yield, methane production and combustion [J]. Bioresource Technology, 2011, 102(3): 2595–2604.

    Article  Google Scholar 

  11. MONTINGELLIA M E, TEDESCO S, OLABI A G. Biogas production from algal biomass: A review [J]. Renewable and Sustainable Energy Reviews, 2015, 43: 961–972.

    Article  Google Scholar 

  12. GHADIRYANFAR M, ROSENTRATER K A, KEYHANI A, OMID M. A review of macroalgae production, with potential applications in biofuels and bioenergy [J]. Renewable and Sustainable Energy Reviews, 2016, 4: 473–481.

    Article  Google Scholar 

  13. HIGGINS M J, CHEN Y C, YAROSZ D P, MURTHY S N, MAAS N A, GLINDEMANN D, NOVAK J T. Cycling of volatile organic sulfur compounds in anaerobically digested biosolids and its implications for odors [J]. Water Environment Research, 2006, 78(3): 243–252.

    Article  Google Scholar 

  14. DU Wei-wei, PARKER W J. Behavior of volatile sulfur compounds in mesophilic anaerobic digestion [J]. Water Environment Federation, 2009, 12(1): 3963–3979.

    Article  Google Scholar 

  15. BELLE A J, LANSING S, MULBRY W, WEIL R R. Methane and hydrogen sulfide production during co-digestion of forage radish and dairy manure [J]. Biomass and Bioenergy, 2015, 80: 44–51.

    Article  Google Scholar 

  16. ABBOTT T, ESKICIOGLU C. Effects of metal salt addition on odor and process stability during the anaerobic digestion of municipal waste sludge [J]. Waste Management, 2015, 46: 449–458.

    Article  Google Scholar 

  17. CHEN Ye, CHENG J J, CREAMER K S. Inhibition of anaerobic digestion process: A review [J]. Bioresource Technology, 2008, 99(10): 4044–4064.

    Article  Google Scholar 

  18. HAO Xiao-yan, HOU Guang-ying, ZHENG Pei-xue, LIU Ru-tao, LIU Chun-guang. H2S in-situ removal from biogas using a tubular zeolite/TiO2 photocatalytic reactor and the improvement on methane production [J]. Chemical Engineering Journal, 2016, 294: 105–110.

    Article  Google Scholar 

  19. JIA Li-juan, NING Ping, WANG Xiang-yu, QU Guang-fei, XIONG Xiang-feng. Dynamics of liquid-phase catalytic oxidation of hydrogen sulfide removal in rural biogas [J]. Journal of Central South University, 2014, 21(7): 2843–2847.

    Article  Google Scholar 

  20. MILAN Z, SANCHEZ E, WEILAND P, BORJA R, MARTIN A, ILANGOVAN K. Influence of different natural zeolite concentrations on the anaerobic digestion of piggery waste [J]. Bioresource Technology, 2001, 80(1): 37–43.

    Article  Google Scholar 

  21. WATANABE R, TADA C, BABA Y, FUKUDA Y, NAKAI Y. Enhancing methane production during the anaerobic digestion of crude glycerol using Japanese cedar charcoal [J]. Bioresource Technology, 2013, 150: 387–392.

    Article  Google Scholar 

  22. COSOLI P, FERRONE M, PRICL S, FERMEGLIA M. Hydrogen sulphide removal from biogas by zeolite adsorption, Part I. GCMC molecular simulations [J]. Chemical Engineering Journal, 2008, 145(1): 86–92.

    Google Scholar 

  23. CHEN Yi-qing, FAN Zhi-dong, MA Li-xia, YIN Juan, LUO Man, CAI Wang-feng. Performance of three pilot-scale immobilized-cell biotrickling filters for removal of hydrogen sulfide from a contaminated air steam [J]. Saudi Journal of Biological Sciences, 2014, 21(5): 450–456.

    Article  Google Scholar 

  24. JIANG An-xi, ZHAO Yu-xin, XU Gui-qin, LI Li, MA Li. Evolution of air biofilter for H2S and NH3 biodegradation [J]. Journal of Science of Heilongjiang University, 2003, 20(1): 92–95. (in Chinese)

    Google Scholar 

  25. YUAN Xian-zheng, SHI Xiao-shuang, ZHANG Pei-song, WEI Yue-li, GUO Rong-bo, WANG Li-sheng. Anaerobic biohydrogen production from wheat stalk by mixed microflora: Kinetic model and particle size influence [J]. Bioresource Technology, 2011, 102(19): 9007–9012.

    Article  Google Scholar 

  26. DUBOIS M, GILLES K A, HAMILTON JK, REBERS P A, Smith F. Colorimetric method for determination of sugars and related substances [J]. Analytical Chemistry, 1956, 28(3): 350–356.

    Article  Google Scholar 

  27. SAFI C, CHARTON M, PIGNOLET O, SILVESTRE F, VACA-GARCIA C, PONTALIER P Y. Influence of microalgae cell wall characteristics on protein extractability and determination of nitrogen-to-protein conversion factors [J]. J Appl Phycol, 2013, 25(2): 523–529.

    Article  Google Scholar 

  28. HE Shuai, FAN Xiao-lei, KATUKURI N R, YUAN Xian-zheng, WANG Fei, GUO Rong-bo. Enhanced methane production from microalgal biomass by anaerobic bio-pretreatment [J]. Bioresource Technology, 2016, 204: 145–151.

    Article  Google Scholar 

  29. HUILINIR C, QUINTRIQUEO A, ANTILEO C, MONTALVO S. Methane production from secondary paper and pulp sludge: Effect of natural zeolite and modeling [J]. Chemical Engineering Journal, 2014, 257: 131–137.

    Article  Google Scholar 

  30. GUERRERO L, MONTALVO S, HUILINIR C, CAMPOS J L, BARAHONA A, BORJA R. Advances in the biological removal of sulphides from aqueous phase in anaerobic processes: A review [J]. Environmental Reviews, 2016, 24(1): 84–100.

    Article  Google Scholar 

  31. BORJA R, BANKS C J. Semicontinuous anaerobic digestion of soft drink wastewater in immobilised cell bioreactors [J]. Biotechnology Letters, 1993, 15(7): 767–772.

    Article  Google Scholar 

  32. ZHAI Ning-ning, ZHANG Tong, YIN Dong-xue, YANG Gai-he, WANG Xiao-jiao, REN Guang-xin, FENG Yong-zhong. Effect of initial pH on anaerobic co-digestion of kitchen waste and cow manure [J]. Waste Management, 2015, 38: 126–131.

    Article  Google Scholar 

  33. ZHANG Tong, MAO Chun-lan, ZHAI Ning-ning, WANG Xiao-jiao, YANG Gai-he. Influence of initial pH on thermophilic anaerobic co-digestion of swine manure and maize stalk [J]. Waste Management, 2015, 35: 119–126.

    Article  Google Scholar 

  34. KIM M, GOMEC C Y, AHN Y, SPEECE R E. Hydrolysis and acidogenesis of particulate organic material in mesophilic and Thermophilic anaerobic digestion [J]. Environmental technology, 2003, 24(9): 1183–1190.

    Article  Google Scholar 

  35. BABEL S, FUKUSHI K, SITANRASSAMEE B. Effect of acid speciation on solid waste liquefaction in an anaerobic acid digester [J]. Water Research, 2004, 38(9): 2417–2423.

    Article  Google Scholar 

  36. DOGAN T, INCE O, OZ N A, INCE B K. Inhibition of volatile fatty acid production in granular sludge from a UASB reactor [J]. Journal of Environmental Science and Health, 2005, 40(3): 633–644.

    Article  Google Scholar 

  37. ROMERO-GUIZA M S, VILA J, MATA-ALVAREZ J, CHIMENOS J M, ASTALS S. The role of additives on anaerobic digestion: A review [J]. Renewable and Sustainable Energy Reviews, 2016, 58: 1486–1499.

    Article  Google Scholar 

  38. MONTALVO S, GUERRERO L, BORJA R, SANCHEZ E, MILAN Z, CORTES I, ANGELES DE LA LA RUBIA M. Application of natural zeolites in anaerobic digestion processes: A review [J]. Applied Clay Science, 2012, 58: 125–133.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-bo Guo  (郭荣波).

Additional information

Foundation item: Project(2014BAC31B01) supported by the National Science & Technology Support during the 12th Five-Year Plan Period, China; Projects(2015GSF117016, 2015GSF115037) supported by the Key Research & Development Project of Shandong Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Mt., Fu, Sf., He, S. et al. Effects of ceramsite on methane and hydrogen sulphide productions from macroalgae biomass. J. Cent. South Univ. 25, 1076–1083 (2018). https://doi.org/10.1007/s11771-018-3807-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3807-7

Key words

关键词

Navigation