Journal of Central South University

, Volume 25, Issue 5, pp 1043–1051 | Cite as

Effect of ethanol addition on flame characteristics of waste oil biodiesel

  • Jin Gao (高进)
  • Fa-she Li (李法社)
  • Xiao-hui Zhang (张小辉)
  • Hua Wang (王华)
  • Zong-hong Feng (冯宗红)
  • Yi-cheng Shen (申逸骋)
Article

Abstract

Biodiesel is a kind of clean and renewable energy. The effect of ethanol addition on the flame characteristics of waste oil biodiesel is studied by using OH-PLIF technique from the perspective of OH radical evolution. Ethanol addition leads to the appearance of diffusion flame reaction interface ahead of schedule and shortens the diffusion flame height. The experimental results show a linear correlation between the flame height and the fuel flow rate for a given fuel and oxidant. The same conclusion is drawn from the theoretical analysis of the approximate model. In addition, ethanol addition makes the average OH signal intensity of flame at different fuel flow rate tend to be consistent and the fuel flow rate enlarge where the flame field shows the strongest oxidation performance. Average OH signal intensity begins to weaken at larger fuel flow rate, which indicates that fuel flow rate of fuels blended with ethanol can change in larger range and does not significantly affect the uniformity of combustion.

Key words

waste oil biodiesel ethanol diffusion flame OH radical PLIF 

乙醇添加量对地沟油生物柴油燃烧火焰特性的影响

摘要

生物柴油是一种清洁可再生能源。本文应用OH-PLIF 技术从OH 自由基演化的角度研究了乙醇 添加对地沟油生物柴油燃烧火焰特性的影响。添加乙醇会使扩散火焰反应界面前移,同时会降低扩散 火焰高度。在燃料和氧化剂给定的情况下,试验和理论分析都表明燃油流率和火焰高度呈线性关系。 添加乙醇会使火焰平均OH 信号强度在火焰中分布更为均匀,且在燃油流率较大时火焰才会呈现出较 强的氧化性。当燃油流率较大时,平均OH 信号强度开始减弱,表明在地沟油生物柴油中添加乙醇时, 燃油流率可在较大的燃油流率内变化,而不明显影响火焰均匀性。

关键词

地沟油生物柴油 扩散火焰 OH 自由基 平面激光诱导荧光 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    GHAJAR M, KAKAEE A H, MASHADI B. Semi-empirical modeling of volumetric efficiency in engines equipped with variable valve timing system [J]. Journal of Central South University, 2016, 23(12): 3132–3142. DOI: 10.1007/s11771-016-3379-3.CrossRefGoogle Scholar
  2. [2]
    HABIBULLAH M, MASJUKI H H, KALAM M A. Potential of biodiesel as a renewable energy source in Bangladesh [J]. Renewable and Sustainable Energy Reviews, 2015, 50: 819–834. DOI: 10.1016/j.rser.2015.04.149.CrossRefGoogle Scholar
  3. [3]
    KHALIL A E E, GUPTA A K. Hydroxyl radical distribution in distributed reaction combustion condition [J]. Fuel, 2014, 122(15): 28–35. DOI: 10.1016/j.fuel.2014.01.010.CrossRefGoogle Scholar
  4. [4]
    YAMAMOTO K, ISII S, OHNISHI M. Local flame structure and turbulent burning velocity by joint PLIF imaging [J]. Proceedings of the Combustion Institute, 2011, 33(1): 1285–1292. DOI: 10.1016/j.proci.2010.06.087.CrossRefGoogle Scholar
  5. [5]
    LI Z S, LI B, SUN Z W. Turbulence and combustion interaction: High resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CH2 O in a piloted premixed jet flame [J]. Combustion and Flame, 2010, 157(6): 1087–1096. DOI: 10.1016/j.combustflame.2010.02.017.CrossRefGoogle Scholar
  6. [6]
    YANG Li, WANG Zhi-hua, ZHU Yan-qun, LI Zhong-shan. Premixed jet flame characteristics of syngas using OH planar laser induced fluorescence [J]. Chinese Science Bulletin, 2011, 56(26): 2862–2868. DOI: 10.1007/s11434-011-4630-9.CrossRefGoogle Scholar
  7. [7]
    YUAN R, KARIUKI J, DOWLUT A. Reaction zone visualisation in swirling spray n-heptane flames [J]. Proceedings of the Combustion Institute, 2014, 35(2): 1649–1656. DOI: 10.1016/j.proci.2014.06.012.CrossRefGoogle Scholar
  8. [8]
    ALVISO D, ROLON J C, SCOUFLAIRE P. Experimental and numerical studies of biodiesel combustion mechanisms using a laminar counterflow spray premixed flame [J]. Fuel, 2015, 153: 154–165. DOI: 10.1016/j.fuel.2015.02.079.CrossRefGoogle Scholar
  9. [9]
    ZHANG M, WANG J, XIE Y. Measurement on instantaneous flame front structure of turbulent premixed CH4/H2/air flames [J]. Experimental Thermal and Fluid Science, 2014, 52(1): 288–296. DOI: 10.1016/j.expthermflusci.2013.10.002.CrossRefGoogle Scholar
  10. [10]
    MATYNIA A, IDIR M, MOLET J. Absolute OH concentration profiles measurements in high pressure counterflow flames by coupling LIF, PLIF, and absorption techniques [J]. Applied Physics B: Lasers and Optics, 2012, 108(2): 393–405. DOI: 10.1007/s00340-012-4959-z.CrossRefGoogle Scholar
  11. [11]
    SANG H W, DOOLEY S, DRYER F L. Kinetic effects of aromatic molecular structures on diffusion flame extinction [J]. Proceedings of the Combustion Institute, 2011, 33(1): 1163–1170. DOI: 10.1016/j.proci.2010.05.082.CrossRefGoogle Scholar
  12. [12]
    WON S H, SUN W, JU Y. Kinetic effects of toluene blending on the extinction limit of n-decane diffusion flames [J]. Combustion and Flame, 2010, 157(3): 411–420. DOI: 10.1016/j.combustflame.2009.11.016.CrossRefGoogle Scholar
  13. [13]
    FRANZELLI B, SCOUFLAIRE P, CANDEL S. Timeresolved spatial patterns and interactions of soot, PAH and OH in a turbulent diffusion flame [J]. Proceedings of the Combustion Institute, 2014, 35(2): 1921–1929. DOI: 10.1016/j.proci.2014.06.123.CrossRefGoogle Scholar
  14. [14]
    PARASARA M U, ADROJA F N. An experimental investigation of palm oil blend with diesel fuel on engine performance and emission of a diesel engine: A review [J]. Journal of Thermal Engineering and Application, 2015, 2(2): 1–8.Google Scholar
  15. [15]
    QI D H, CHEN H, GENG L M. Performance and combustion characteristics of biodiesel–diesel–methanol blend fuelled engine [J]. Applied Energy, 2010, 87(5): 1679–1686. DOI: 10.1016/j.apenergy.2009.10.016.CrossRefGoogle Scholar
  16. [16]
    MUTHURAMAN S. The performance of four stroke surface ignition ceramic heater C.I. engine using ethanol-diesel blend [J]. International Journal of Energy and Power Engineering, 2014, 3(2): 38–45. DOI: 10.11648/j.ijepe. 20140302.11.Google Scholar
  17. [17]
    MERCHAN-MERCHAN W, WARE H O T. Study of carbon and carbon–metal particulates in a canola methyl ester air-flame [J]. Combustion and Flame, 2015, 162(1): 216–225. DOI: 10.1016/j.combustflame.2014.07.007.CrossRefGoogle Scholar
  18. [18]
    BOTERO M L, MOSBACH S, AKROYD J. Sooting tendency of surrogates for the aromatic fractions of diesel and gasoline in a wick-fed diffusion flame [J]. Fuel, 2015, 153(3): 31–39. DOI: 10.1016/j.fuel.2015.02.108.CrossRefGoogle Scholar
  19. [19]
    KHOSOUSI A, LIU F, DWORKIN S B. Experimental and numerical study of soot formation in laminar coflow diffusion flames of gasoline/ethanol blends [J]. Combustion and Flame, 2015, 162(10): 3925–3933. DOI: 10.1016/j.combustflame.2015.07.029.CrossRefGoogle Scholar
  20. [20]
    KONNOV A A, MEUWISSEN R J, GOEY L P H D. The temperature dependence of the laminar burning velocity of ethanol flames [J]. Proceedings of the Combustion Institute, 2011, 33(1): 1011–1019. DOI: 10.1016/j.proci.2010.06.143.CrossRefGoogle Scholar
  21. [21]
    TOSATTO L, MELLA F, LONG M B. A study of JP-8 surrogate coflow flame structure by combined use of laser diagnostics and numerical simulation [J]. Combustion and Flame, 2012, 159(10): 3027–3039. DOI: 10.1016/j.combustflame.2012.05.001.CrossRefGoogle Scholar
  22. [22]
    ELBAZ A M, ROBERTS W L. Flame structure of methane inverse diffusion flame [J]. Experimental Thermal and Fluid Science, 2014, 56(5): 23–32. DOI: 0.1016/j.expthermflusci. 2013.11.011.CrossRefGoogle Scholar
  23. [23]
    LARTIGUE G, MEIER U, BÉRAT C. Experimental and numerical investigation of self-excited combustion oscillations in a scaled gas turbine combustor [J]. Applied Thermal Engineering, 2004, 24(11): 1583–1592. DOI: 10.1016/j.applthermaleng.2003.10.026.CrossRefGoogle Scholar
  24. [24]
    MCALLISTER S, CHEN J Y, FERNANDEZPELLO A C. Fundamentals of combustion processes [M]. New York: Springer, 2011. DOI: 10.1007/978-1-4419-7943-8_7.CrossRefGoogle Scholar
  25. [25]
    SUNDERLAND P B, QUINTIERE J G, TABAKA G A. Analysis and measurement of candle flame shapes [J]. Proceedings of the Combustion Institute, 2011, 33(2): 2489–2496. DOI: 10.1016/j.proci.2010.06.095.CrossRefGoogle Scholar
  26. [26]
    LI Fa-she, DU Wei, BAO Gui-rong. Improving research for low temperature fluidity of biodiesel [J]. Journal of Kunming University of Science and Technology, 2014, 39(5): 11–15. (in Chinese) DOI: 10.3969/j.issn.1007-855x.2014.05.003.Google Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Metallurgical and Energy EngineeringKunming University of Science and TechnologyKunmingChina
  2. 2.State Key Laboratory of Complex Nonferrous Metal Resources Clean UtilizationKunming University of Science and TechnologyKunmingChina

Personalised recommendations