Advertisement

Journal of Central South University

, Volume 25, Issue 5, pp 1033–1042 | Cite as

Thermodynamics, kinetics and mechanism analysis of Cu(II) adsorption by in-situ synthesized struvite crystal

  • Cong Peng (彭聪)
  • Li-yuan Chai (柴立元)
  • Yu-xia Song (宋雨夏)
  • Xiao-bo Min (闵小波)
  • Chong-jian Tang (唐崇俭)
Article

Abstract

Synthesized struvite was innovatively applied to removing Cu(II) from aqueous solution. The Cu(II) adsorption behavior and relative mechanisms were studied and analyzed. The maximum Cu(II) adsorption under pH=4.0 and 318 K calculated from adsorption thermodynamic analysis was 145.1 mg/g. The sorption kinetics can be favorably described by pseudo-second order model. The activation energy (Ea) of 17.5 kJ/mol suggested that the adsorption process was a chemical adsorption. The calculated thermodynamic parameters indicated that the adsorption was a spontaneous and endothermic one. On the basis of characterization upon struvite before and after adsorption, it was found that the electrostatic attraction and coordination bonding supported the ion sorption on struvite surface, and the transformation of copper ion into copper hydroxide occurred on struvite surface and within its crevices.

Key words

struvite heavy metal chemical adsorption coordination bonding crystal synthesis 

鸟粪石晶体吸附Cu(II)的热力学和动力学特征分析及机制探讨

摘要

本文采用基于液相原位调控合成的鸟粪石晶体材料开展了对Cu(II)的吸附研究。基于吸附热力 学及动力学分析,揭示了鸟粪石晶体对Cu(II)吸附行为及相关机理。合成的鸟粪石晶体材料属斜方晶 系,颗粒表面分布有较多孔隙、狭缝,比表面积为23.42 m2/g。热力学分析表明,鸟粪石晶体材料在 pH 4.0 及318 K 条件下对Cu(II)的饱和吸附量为145.1 mg/g;吸附动力学分析表明,吸附过程符合准 二级动力学模型。经计算可得其吸附活化能Ea 为17.5 kJ/mol,表明吸附过程属于化学吸附。此外,进 行了包括吉布斯自由能变ΔGads 、焓变ΔHads、熵变ΔSads 在内的热力学计算,结果表明鸟粪石晶体吸 附Cu(II)过程属于自发、吸热反应。基于对鸟粪石晶体材料吸附前、后的表征,发现过程中表面静电 引力及配位作用促进了铜离子在鸟粪石表面的吸附,并且发现鸟粪石晶体材料在表面及裂缝中存在有 铜离子向氢氧化铜的转变行为。

关键词

鸟粪石 重金属 化学吸附 配位作用 晶体合成 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    WANG T, ZHANG L, LI C, YANG W, SONG T, TANG C, MENG Y, DAI S, WANG H, CHAI L, LUO J. Synthesis of Core-shell magnetic Fe3O4@poly(m-phenylenediamine) particles for chromium reduction and adsorption [J]. Environmental Science & Technology, 2015, 49(9): 5654–5662.CrossRefGoogle Scholar
  2. [2]
    YANG J, CHAI L Y, WANG Y Y, HE X W, WANG J L. Transportation and distribution of chromium in the anaerobic sludge treating the chromium-containing wastewater [J]. International Journal of Environment & Pollution, 2010, 38(3): 256–266.CrossRefGoogle Scholar
  3. [3]
    JIANG B F, SUN W L. Assessment of heavy metal pollution in sediments from Xiangjiang River (China) using sequential extraction and lead isotope analysis [J]. Journal of Central South University, 2014, 21: 2349–2358.CrossRefGoogle Scholar
  4. [4]
    WANG Y, PENG B, YANG Z, TANG C, CHEN Y. Treatment of Cr(VI) contaminated water with Pannonibacterphragmitetus BB [J]. Environmental Earth Sciences, 2014, 71(10): 4333–4339.CrossRefGoogle Scholar
  5. [5]
    FEI J C, MIN X B, WANG Z X, PANG Z H, LIANG Y J, KE Y. Health and ecological risk assessment of heavy metals pollution in an antimony mining region: A case study from South China [J]. Environmental Science and Pollution Research, 2017, 24(35): 27573–27586.CrossRefGoogle Scholar
  6. [6]
    LIU D G, MIN X B, KE Y, CHAI L Y, LIANG Y J, LI Y C, YAO L W, WANG Z B. Co-treatment of flotation waste, neutralization sludge, and arsenic-containing gypsum sludge from copper smelting: solidification/stabilization of arsenic and heavy metals with minimal cement clinker [J]. Environmental Science and Pollution Research, 2018. DOI: 10.1007/s11356-017-1084-x.Google Scholar
  7. [7]
    HUANG S, YUAN C, LI Q, TANG C, OUYANG K, WANG B. Distribution and risk assessment of heavy metals in soils from a typical Pb-Zn mining area [J]. Polish Journal of Environmental Studies, 2017, 26(3): 1105–1112.CrossRefGoogle Scholar
  8. [8]
    KONG X F, YANG B, XIONG H, ZHOU Y, XUE S G, XU B Q, WANG S X. Selective removal of heavy metal ions from aqueous solutions with surface functionalized silica nanoparticles by different functional groups [J]. Journal of Central South University, 2014, 21: 3575–3579.CrossRefGoogle Scholar
  9. [9]
    TANG C, DUAN C, YU C, SONG Y, CHAI L, XIAO R, WEI Z, MIN X. Removal of nitrogen from wastewaters by anaerobic ammonium oxidation (ANAMMOX) using granules in upflow reactors [J]. Environmental Chemistry Letters, 2017, 15(2): 311–328.CrossRefGoogle Scholar
  10. [10]
    ZENG J, YE H, HUANG N, LIU J, ZHENG L. Selective separation of Hg(II) and Cd(II) from aqueous solutions by complexation–ultrafiltration process [J]. Chemosphere, 2009, 76(5): 706–710.CrossRefGoogle Scholar
  11. [11]
    CHEN Y, YE W, YANG X, DENG F, HE Y. Effect of contact time, pH and ionic strength on Cd (II) adsorption from aqueous solution onto bentonite from Gaomiaozi, China [J]. Environmental Earth Sciences, 2011, 64(2): 329–336.CrossRefGoogle Scholar
  12. [12]
    CHEN Y, PENG L, ZENG Q, YANG Y, LEI M, SONG H, CHAI L, GU J. Removal of trace Cd(II) from water with the manganese oxides/ACF composite electrode [J]. Clean Technologies and Environmental Policy, 2015, 17(1): 49–57.CrossRefGoogle Scholar
  13. [13]
    PENG L, CHEN Y, DONG H, ZENG Q, SONG H, CHAI L, GU J. Removal of trace As(V) from water with the titanium dioxide/ACF composite electrode [J]. Water, Air, & Soil Pollution, 2015, 226(7): 1–11.CrossRefGoogle Scholar
  14. [14]
    JING Q, CHAI L, HUANG X, TANG C, GUO H, WANG W. Behavior of ammonium adsorption by clay mineral halloysite [J]. Transactions of Nonferrous Metals Society of China, 2017, 27: 1627–1635.CrossRefGoogle Scholar
  15. [15]
    WANG Y, LI Z W, HUANG B, JIANG W G, GUO L, HUANG J Q, ZENG G M. Kinetics comparison on simultaneous and sequential competitive adsorption of heavy metals in red soils [J]. Journal of Central South University, 2015, 22: 1269–1275.CrossRefGoogle Scholar
  16. [16]
    XIAO R, GAO L, WEI Z, SPINNEY R, LUO S, WANG D, DIONYSIOU D, TANG C, YANG W. Mechanistic insight into degradation of endocrine disrupting chemical by hydroxyl radical: An experimental and theoretical approach [J]. Environmental Pollution, 2017, 231(2): 1446–1452.CrossRefGoogle Scholar
  17. [17]
    CHEN R, CHAI L, LI Q, SHI Y, WANG Y, MAHMOOD A. Preparation and characterization of magnetic Fe3O4/CNT nanoparticles by RPO method to enhance the efficient removal of Cr(VI) [J]. Environmental Science and Pollution Research, 2013, 20(10): 7175–7185.CrossRefGoogle Scholar
  18. [18]
    HAO S Y, VERLOTTA A, APREA P, PEPE F, CAPUTO D, ZHU W. Optimal synthesis of amino-functionalized mesoporous silicas for the adsorption of heavy metal ions [J]. Microporous and Mesoporous Materials, 2016, 236: 250–259.CrossRefGoogle Scholar
  19. [19]
    LIN J B, YUAN S J, WANG W, HU Z H, YU H Q. Precipitation of organic arsenic compounds and their degradation products during struvite formation [J]. Journal of Hazardous Materials, 2016, 317: 90–96.CrossRefGoogle Scholar
  20. [20]
    PENG C, CHAI L, TANG C, MIN X, SONG Y, DUAN C, YU C. Study on the mechanism of copper-ammonia complex decomposition in struvite formation process and enhanced ammonia and copper removal [J]. Journal of Environmental Sciences, 2017, 51: 222–233.CrossRefGoogle Scholar
  21. [21]
    SONG Y X, CHAI L Y, TANG C J, XIAO R, LI B R, WU D, MIN X B. Influence of ZnO nanoparticles on anammox granules: The inhibition kinetics and mechanism analysis by batch assays [J]. Biochemical Engineering Journal, 2018, 133: 122–129. DOI: 10.1016/j.bej.2018.02.006.CrossRefGoogle Scholar
  22. [22]
    CHAI L, PENG C, MIN X, TANG C, SONG Y, ZHANG Y, ZHANG J. Two-sectional struvite formation process for enhanced treatment of copper-ammonia complex wastewater [J]. Transactions of Nonferrous Metals Society of China, 2017, 27: 457–466.CrossRefGoogle Scholar
  23. [23]
    PENG C, CHAI L, TANG C, MIN X, ALI M, SONG Y, QI W. Feasibility and enhancement of copper and ammonia removal from wastewater using struvite formation: A comparative research [J]. Journal of Chemical Technology and Biotechnology, 2017, 92: 325–333.CrossRefGoogle Scholar
  24. [24]
    SHENG P X, TING Y P, CHEN J P, HONG L. Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: Characterization of biosorptive capacity and investigation of mechanisms [J]. Journal of Colloid and Interface Science, 2004, 275: 131–141.CrossRefGoogle Scholar
  25. [25]
    HO Y S, MCKAY G. A Comparison of chemisorption kinetic models applied to pollutant removal on various sorbents [J]. Process Safety and Environment Protection, 1998, 76: 332–340.CrossRefGoogle Scholar
  26. [26]
    SONG Y, LIAO Q, YU C, XIAO R, TANG C, CHAI L, DUAN C. Physicochemical and microbial properties of settled and floated anammox granules in upflow reactor [J]. Biochemical Engineering Journal, 2017, 123: 75–85.CrossRefGoogle Scholar
  27. [27]
    CHAI L, WANG Y, ZHAO N, YANG W, YOU X. Sulfatedoped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water [J]. Water Research, 2013, 47: 4040–4049.CrossRefGoogle Scholar
  28. [28]
    SMITH J M. Chemical engineering kinetics [M]. New York: McGraw-Hill, 1970.Google Scholar
  29. [29]
    YE T, WEI Z, SPINNEY R, TANG C, LUO S, XIAO R, DIONYSIOU D. Chemical structure-based predictive model for the oxidation of trace organic contaminates by sulfate radical [J]. Water Research, 2017,116(1): 106–115.CrossRefGoogle Scholar
  30. [30]
    KADIRVELU K, NAMASIVAYAM C. Activated carbon from coconut coirpith as metal adsorbent: adsorption of Cd(II) from aqueous solution [J]. Advances in Environmental Research, 2004, 7: 471–478.CrossRefGoogle Scholar
  31. [31]
    CHAWLA S K, SANKARRAMAN N, PAYER J H. Diagnostic spectra for XPS analysis of Cu—O—S—H compounds [J]. Journal of Electron Spectroscopy and Related Phenomena, 1992, 61: 1–18.CrossRefGoogle Scholar
  32. [32]
    GAYAN R, GRASSIAN V H. Role(s) of adsorbed water in the surface chemistry of environmental interfaces [J]. Chemical Communications, 2013, 49: 3071–3094.CrossRefGoogle Scholar
  33. [33]
    OKUR H I, KHERB J, CREMER P S. Cations bind only weakly to amides in aqueous solutions [J]. Journal of American Chemical Society, 2013, 135: 5062–5067.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Cong Peng (彭聪)
    • 1
    • 2
  • Li-yuan Chai (柴立元)
    • 1
    • 2
  • Yu-xia Song (宋雨夏)
    • 1
    • 2
  • Xiao-bo Min (闵小波)
    • 1
    • 2
  • Chong-jian Tang (唐崇俭)
    • 1
    • 2
  1. 1.School of Metallurgy and EnvironmentCentral South UniversityChangshaChina
  2. 2.Chinese National Engineering Research Center for Control and Treatment of Heavy Metal PollutionChangshaChina

Personalised recommendations