Journal of Central South University

, Volume 25, Issue 5, pp 1025–1032 | Cite as

Partial transient-liquid-phase bonding of TiC cermet to stainless steel using impulse pressuring with Ti/Cu/Nb interlayer

  • Li Huang (黄利)
  • Guang-min Sheng (盛光敏)
  • Jia Li (李佳)
  • Guang-jie Huang (黄光杰)
  • Xin-jian Yuan (袁新建)
Article

Abstract

Partial transient liquid phase (PTLP) bonding of TiC cermet to 06Cr19Ni10 stainless steel was carried out. Impulse pressuring was used to reduce the bonding time, and a Ti/Cu/Nb interlayer was employed to alleviate the detrimental effect of interfacial reaction products on the bonding strength. Successful bonding was achieved at 885 °C under a pulsed pressure of 2–10 MPa within durations in the range of 2–8 min, which was notably shortened in comparison with conventional PTLP bonding. Microstructure characterization revealed the σ phase with a limit solubility of Nb, a sequence of Ti—Cu intermetallic phases and solid solutions of Ni and Cu in α+β Ti in the reaction zone. The maximum shear strength of 106.7 MPa was obtained when the joint was bonded for 5 min, indicating that a robust metallurgical bonding was achieved. Upon shear loading, the joints fractured along the Ti—Cu intermetallics interface and spread to the interior of TiC cermet in a brittle cleavage manner.

Key words

TiC cermet transient liquid phase impulse pressuring mechanical property fracture 

Ti/Cu/Nb 作中间层脉冲加压瞬间液相连接TiC 金属陶瓷与不锈钢

摘要

部分瞬间液相焊接(PTLP)综合了钎焊和固相扩散连接的优点,且对连接母材表面粗糙度比 传统固相连接相对较低,因此在陶瓷和金属异种材料连接方向上具有较大的优势。采用Ti—Cu—Nb 金 属中间层,对TiC 金属陶瓷与06Cr19Ni10 不锈钢进行PTLP 连接试验。通过SEM、EDS、XRD 和拉 伸试验等方法,研究了活性元素中间层、工艺参数对TiC/TiCuNb/06Cr19Ni10 瞬间液相焊接头性能与 界面微观结构的影响规律。结果表明,在连接温度885 °C、脉冲压力2~10 MPa 的工艺条件下保温5 min 时接头剪切强度达到最大值(~106.7 MPa)。微观组织表征发现,在TiC 金属陶瓷一侧,Ti—Cu 层在高 于共晶点的连接温度时发生熔化,与TiC 金属陶瓷、核心金属层Nb 产生界面反应;而在304SS 侧, Nb 与304SS 进行固相扩散, 形成具有固相扩散特征的连接结构, 连接后界面形成 06Cr19Ni10/σ/Nb/CuTi/CuTi2/α+βTi/TiC 过渡结构。连接接头的裂纹沿着Ti—Cu 金属化合物层向TiC 陶 瓷母材扩展,呈脆性解理断裂特征。

关键词

TiC 金属陶瓷 不锈钢 瞬间液相连接 脉冲加压 断口 力学性能 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    LIU N, XU Y D, LI H. Effect of nano-micro TiN addition on the microstructure and mechanical properties of TiC based cermets [J]. J Eur Ceram Soc, 2002, 22(13): 2409–2414.CrossRefGoogle Scholar
  2. [2]
    SUN K N, YIN Y S, LI A M. Intermetallics/ceramic matrix composite [M]. Beijing: China Machine Press, 2002. (in Chinese)Google Scholar
  3. [3]
    TRAVESSA D, FERRANTE M, DEN O G. Diffusion bonding of aluminium oxide to stainless steel using stress relief interlayers [J]. Mater Sci Eng A, 2002, 337(1): 287–296.CrossRefGoogle Scholar
  4. [4]
    SHEN X Q, LI Y J, PUTCHKOV U A. Finite-element analysis of residual stresses in Al2O3–TiC/W18Cr4V diffusion bonded joints [J]. Comp Mater Sci, 2009, 45(2): 407–410.CrossRefGoogle Scholar
  5. [5]
    YE D M, XIONG W H. Vacuum brazing of Ti(C, N) based cermets to 45 Steel [J]. Rare Metal Mat Eng, 2008, 37(7): 1281–1284.Google Scholar
  6. [6]
    PIERSON H O. Handbook of refractory carbides & nitrides: Properties, characteristics, processing and apps [M]. William Andrew, 1996.Google Scholar
  7. [7]
    GOMEZ-DE-SALAZAR J M, BARRENA M I. Dissimilar fusion welding of AA7020/MMC reinforced with Al2O3 particles, microstructure and mechanical properties [J]. Mater Sci Eng A, 2003, 352(1): 162–168.CrossRefGoogle Scholar
  8. [8]
    BARRENA M I, GOMEZ-DE-SALAZAR J M, MATESANZ L. Ni–Cu alloy for diffusion bonding cermet/steel in air [J]. Mater Lett, 2009, 63(24): 2142–2145.CrossRefGoogle Scholar
  9. [9]
    LI Z R, FENG J C, CAO J. Vacuum diffusion bonding of TiB2 cermet to TiAl based alloys [J]. Mater Sci Tech-Lond, 2004, 20(12): 1666–1668.CrossRefGoogle Scholar
  10. [10]
    HUANG W Q, LI Y, WANG J. Microstructure and fracture of TiC-Al2O3/W18Cr4V diffusion bonded joint [J]. Kovove Mater, 2010, 48: 227–231.Google Scholar
  11. [11]
    CHEN Z, CAO M S, ZHAO Q Z. Interfacial microstructure and strength of partial transient liquid-phase bonding of silicon nitride with Ti/Ni multi-interlayer [J]. Mater Sci Eng A, 2004, 380(1): 394–401.CrossRefGoogle Scholar
  12. [12]
    ZHENG C, LOU H, FEI Z. Partial transient liquid-phase bonding of Si3N4 with Ti/Cu/Ni multi-interlayers [J]. J Mater Sci Lett, 1997, 16(24): 2026–2028.CrossRefGoogle Scholar
  13. [13]
    WANG G, LANNUTTI J J. Chemical thermodynamics as a predictive tool in the reactive metal brazing of ceramics [J]. Metall Mater Trans A, 1995, 26(6): 1499–1505.CrossRefGoogle Scholar
  14. [14]
    MASSALSKI T B, OKAMOTO H, SUBRAMANIAN P R. Binary alloy phase diagrams [M]. Materials Park, OH: ASM International, 1990.Google Scholar
  15. [15]
    YANG M, ZOU Z D, SONG S L. Effect of interlayer thickness on strength and fracture of Si3N4 and Inconel600 joint [J]. Key Eng Mater, 2005, 297: 2435–2440.CrossRefGoogle Scholar
  16. [16]
    MARKS R A, SUGAR J D, GLAESER A M. Ceramic joining IV. Effects of processing conditions on the properties of alumina joined via Cu/Nb/Cu interlayers [J]. J Mater Sci, 2001, 36(23): 5609–5624.Google Scholar
  17. [17]
    SHACKELFORD J F, ALEXANDER W. CRC materials science and engineering handbook [M]. CRC Press, 2010.Google Scholar
  18. [18]
    HAN J, SHENG G M, ZHOU X L. Pulse pressuring diffusion bonding of Ti alloy/austenite stainless steel processed by surface self-nanocrystallization [J]. ISIJ Int, 2009, 49(1): 86–91.CrossRefGoogle Scholar
  19. [19]
    SUN X J, GU J L, BAI B Z, CHEN N P. Fabrication of submicron grained titanium alloy by compressive deformation [J]. Acta Metall Sin-Engl, 2009, 13(2): 638–644.Google Scholar
  20. [20]
    LIU G M, ZOU G S, WU A P. Improvements of the Si3N4 brazed joints with intermetallics [J]. Mater Sci Eng A, 2006, 415(1): 213–218.Google Scholar
  21. [21]
    XU H, DU Y, HUANG B. Phase equilibria of the Cu–Nb–Ti system at 850 °C [J]. J Alloy Compd, 2005, 399(1): 92–95.CrossRefGoogle Scholar
  22. [22]
    KUNDU S, CHATTERJEE S. Characterization of diffusion bonded joint between titanium and 304 stainless steel using a Ni interlayer [J]. Mater Charact, 2008, 59(5): 631–637.CrossRefGoogle Scholar
  23. [23]
    ZDANIEWSKI W A, CONWAY J C, KIRCHNER H P. Effect of joint thickness and residual stresses on the properties of ceramic adhesive joints: II, Experimental results [J]. J Am Ceram Soc, 1987, 70(2): 110–118.CrossRefGoogle Scholar
  24. [24]
    BLUGAN G, KUEBLER J, BISSIG V. Brazing of silicon nitride ceramic composite to steel using SiC-particlereinforced active brazing alloy [J]. Ceram Int, 2007, 33(6): 1033–1039.CrossRefGoogle Scholar
  25. [25]
    SINGH M, MARTINEZ F J, ASTHANA R. Interfacial characterization of silicon nitride/silicon nitride joints brazed using Cu-base active metal interlayers [J]. Ceram Int, 2012, 38(4): 2793–2802.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Li Huang (黄利)
    • 1
  • Guang-min Sheng (盛光敏)
    • 1
  • Jia Li (李佳)
    • 2
  • Guang-jie Huang (黄光杰)
    • 1
  • Xin-jian Yuan (袁新建)
    • 1
  1. 1.College of Materials Science and EngineeringChongqing UniversityChongqingChina
  2. 2.Changan Commercial Vehicle Business DepartmentChina Changan Automobile GroupChongqingChina

Personalised recommendations