Journal of Central South University

, Volume 25, Issue 5, pp 987–1002 | Cite as

Influence of aging treatment on corrosion behavior and mechanism of Mg–Y alloys

  • Hong Xu (徐宏)
  • Xin Zhang (张新)
  • San-sheng Jiang (蒋三生)
  • Ji-ping Ren (任霁萍)
  • Xiang-yu Gao (高翔宇)
Article
  • 2 Downloads

Abstract

This paper studied the influence of aging treatment on the corrosion behavior and mechanism of Mg—Y alloys with different Y content through corrosion mass loss test, electrochemical test and corrosion morphologies observation. Results show that the peak-aging times of Mg–(0.25, 2.5, 5, 8 and 15) Y alloys at 250 °C were 4, 6, 10, 12 and 16 h. The aging treatment reduced the corrosion resistance of Mg–Y alloys, and the corrosion resistance of Mg–Y alloys became worse with increasing of the aging time. The change magnitude of the open circuit potentials for Mg–(0.25, 2.5)Y alloys was greater than that of Mg–(5, 8 and 15)–Y alloys. The polarization curves of Mg (0.25, 2.5, 5, 8 and 15) Y alloys had the similar shape after aging treatment, and the slopes of the anodic branch were greater than those of the cathodic branches. After aging treatment, the corrosion modes of Mg–0.25Y and Mg–(2.5, 5, 8 and 15) Y alloys were uniform corrosion and pitting corrosion with small local deep corrosion.

Key words

Mg–Y alloy aging treatment electrochemical corrosion resistance corrosion morphology 

时效处理对Mg–Y 合金腐蚀行为和腐蚀机理的影响

摘要

本文采用腐蚀失重试验、电化学测试和腐蚀形貌观察等研究方式研究了时效处理对不同Y 含量 Mg–Y 合金的腐蚀行为和腐蚀机理的影响机制。研究结果表明:Mg–(0.25,2.5,5,8,15)Y 合金在 250 °C 时的峰时效时间分别为4、6、10、12 和16 h;时效处理降低了Mg–Y 合金的耐腐蚀性能,并 且对于同一种Mg–Y 合金的耐蚀性能随着失效时间的延长而逐渐降低;Mg–(0.25, 2.5)Y 合金的开路电 位的变化幅度远大于Mg–(5,8,15) Y 合金的开路电位的变化幅度;时效处理后,Mg–(0.25,2.5,5, 8,15)Y 这5 种合金有着相类似的极化曲线形状,并且阳极曲线的斜率均大于阴极曲线的斜率;时效 处理后,Mg–0.25Y 合金的腐蚀机理为均匀腐蚀,而Mg–(2.5,5,8,15)Y 合金的腐蚀机理为局部腐 蚀较深的点蚀。

关键词

Mg–Y 合金 时效处理 电化学腐蚀 腐蚀形貌 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    SONG G, ATRENS A, DARGUSCH M. Influence of microstructure on the corrosion of die cast AZ80D [J]. Corrosion Science, 1999, 41(5): 249–273.Google Scholar
  2. [2]
    APPS P J, KARIMZADEB H, KING J F, LOTIMER G W. Phase compositions in magnesium-rare earth alloys containing yttrium, gadolinium or dysprosium [J]. Scripta Materialia, 2003, 48(5): 475–481.CrossRefGoogle Scholar
  3. [3]
    WANG Jun, MENG Jian, ZHANG De-ping, TANG Ding-xiang. Effect of Y for enhanced age hardening response and mechanical properties of Mg-Gd-Y-Zr alloys [J]. Materials Science and Engineering A, 2007, 456(1, 2): 78–84.Google Scholar
  4. [4]
    ATRENS A, SONG G L, CAO F, SHI Z, BOWEN P K. Advances in Mg corrosion and research suggestions [J]. Journal of Magnesium and Alloys, 2013, 1(3): 177–200.CrossRefGoogle Scholar
  5. [5]
    WEN Li, YU Kun, FANG Hong-jie, XIONG Han-qing, YIN Xiang, ZHU Hua-long, MA Jia-ji, JIANG Da-yue. Electrochemical behavior of Mg-Al-Pb alloy in 3.5% NaCl solution [J]. Journal of Central South University, 2016, 23(10): 2475–2482.CrossRefGoogle Scholar
  6. [6]
    SHI Z, LIU M, ATRENS A. Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation [J]. Corrosion Science, 2010, 52(2): 579–588.CrossRefGoogle Scholar
  7. [7]
    NIE J F, MUDDLE B C. Characterisation of strengthening precipitate phases in a Mg–Y–Nd alloy [J]. Acta Materialia, 2000, 48(8): 1691–1703.CrossRefGoogle Scholar
  8. [8]
    HONMA T, KAMADO S, HONO K. Effect of Zn additions on the age-hardening of Mg-2.0Gd-1.2Y-0.2Zr alloys [J]. Acta Materialia, 2007, 55: 4137–150.CrossRefGoogle Scholar
  9. [9]
    MA Ming-long, ZHANG Kui, LI Xing-gang. The hot deformation behavior of as-cast Mg-7Gd-5Y-1.2Nd-Zr magnesium alloy [J]. Transactions of Nonferrous Metals Society of China, 2008, 18(s1): 132–139.CrossRefGoogle Scholar
  10. [10]
    ZHANG Xin, ZHANG Kui, DENG Xia, LI Hong-wei, LI Yong-jun, MA Ming-long, LI Ning, WANG Yan-long. Corrosion behavior of Mg-Y alloy in NaCl aqueous solution [J]. Progress in Natural Science: Materials International, 2012, 22(1): 169–174.CrossRefGoogle Scholar
  11. [11]
    ZHANG Xin, LI Yong-jun, ZHANG Kui, WANG Chang-shun, LI Hong-wei, MA Ming-long, ZHANG Baodong. Corrosion and electrochemical behavior of Mg-Y alloy in 3.5wt.% NaCl solution [J]. Transactions of Nonferrous Metals Society of China, 2013, 23(5): 1226–1236.CrossRefGoogle Scholar
  12. [12]
    XU Hong, ZHANG Xin, ZHANG Kui. Effect of Y extrusion on corrosion behavior and corrosion mechanism of Mg–Y alloy [J]. Journal of Rare Earths, 2016, 34(3): 315–327.CrossRefGoogle Scholar
  13. [13]
    ZHANG Xin, ZHANG Kui, LI Xing-gang, DENG Xia, LI Hong-wei, ZHANG Bao-dong, WANG Chang-shun. Comparative study on the corrosion behaviour of as-cast and extruded Mg-5Y-7Gd-1Nd-0.5Zr magnesium alloys in 5wt.% NaCl aqueous solution [J]. Transactions of Nonferrous Metals Society of China, 2012, 22(5): 1018–1027.CrossRefGoogle Scholar
  14. [14]
    ZHANG Kui, LI Xing-gang, LI Yong-jun. Effects of Gd contents on microstructure and mechanical properties of Mg-Y-RE-Zr magnesium alloy [J]. Transactions of Nonferrous Metals Society of China, 2008, 18(s1): 12–15.MathSciNetCrossRefGoogle Scholar
  15. [15]
    ALISON J D, CRISIANO P, BRIAN J C, NICHOLAS S, THOMAS A W B, AMELA G, MACRO S. Synchrotron X-ray microtomography study of the role of Y in corrosion of magnesium alloy WE43 [J]. Electrochem Solid-State Lett, 2007, 10: C5–C8.CrossRefGoogle Scholar
  16. [16]
    SONG G, BOWLES A L, STJOHN D H. Corrosion resistance of aged die cast magnesium alloy AZ91D [J]. Materials Science and Engineering A, 2004, 366(1): 74–86.CrossRefGoogle Scholar
  17. [17]
    MATHIEU S, RAPIN C, HAZANL J. Corrosion behavior of high pressure Di-cast and semi-solid cast AZ91D alloys [J]. Corrosion Science, 2002, 44: 2737–2756.CrossRefGoogle Scholar
  18. [18]
    SONG G. Recent progress in corrosion and protection of magnesium alloys [J]. Advance Engineering Materials, 2005, 7(7): 563–586.CrossRefGoogle Scholar
  19. [19]
    ZHANG Jing-hai, NIU Xiao-dong, QIU Xin. Effect of yttrium-rich misch metal on the microstructures, mechanical properties and corrosion behavior of die cast AZ91 alloy [J]. Journal of Alloys Compounds, 2009, 471(1): 322–330.CrossRefGoogle Scholar
  20. [20]
    HE Wei-wei, ZHANG Er-lin, YANG Ke. Effect of Y on the bio-corrosion behavior of extruded Mg-Zn-Mn alloy in Hank’s solution [J]. Materials Science and Engineering C, 2010, 30(1): 167–174.CrossRefGoogle Scholar
  21. [21]
    SHI Zhi-ming, LIU Ming, ATRENS A. Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation [J]. Corrosion Science, 2010, 52(2): 579–588.CrossRefGoogle Scholar
  22. [22]
    WU Guo-hua, FAN Yu, GAO Hang-tao, ZHU Yan-ping. The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D [J]. Materials Science and Engineering A, 2005, 408(1, 2): 255–263.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hong Xu (徐宏)
    • 1
  • Xin Zhang (张新)
    • 2
    • 3
  • San-sheng Jiang (蒋三生)
    • 4
  • Ji-ping Ren (任霁萍)
    • 1
  • Xiang-yu Gao (高翔宇)
    • 5
  1. 1.School of Materials Science and EngineeringNorth University of ChinaTaiyuanChina
  2. 2.Institute of Thermal Power Generation TechnologyChina Datang Corporation Science and Technology Research InstituteBeijingChina
  3. 3.State Key Lab for Fabrication & Processing of Non-ferrous MetalsBeijing General Research Institute for Non-ferrous MetalsBeijingChina
  4. 4.School of Mechanical and Electronic EngineeringBeijing Agricultural Vocation CollegeBeijingChina
  5. 5.Department of Automotive EngineeringTsinghua UniversityBeijingChina

Personalised recommendations