Skip to main content
Log in

Three-dimensional land FD-CSEM forward modeling using edge finite-element method

陆地频率域可控源电磁法三维矢量有限元正演

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A modeling tool for simulating three-dimensional land frequency-domain controlled-source electromagnetic surveys, based on a finite-element discretization of the Helmholtz equation for the electric fields, has been developed. The main difference between our modeling method and those previous works is edge finite-element approach applied to solving the three-dimensional land frequency-domain electromagnetic responses generated by horizontal electric dipole source. Firstly, the edge finite-element equation is formulated through the Galerkin method based on Helmholtz equation of the electric fields. Secondly, in order to check the validity of the modeling code, the numerical results are compared with the analytical solutions for a homogeneous half-space model. Finally, other three models are simulated with three-dimensional electromagnetic responses. The results indicate that the method can be applied for solving three-dimensional electromagnetic responses. The algorithm has been demonstrated, which can be effective to modeling the complex geo-electrical structures. This efficient algorithm will help to study the distribution laws of 3-D land frequency-domain controlled-source electromagnetic responses and to setup basis for research of three-dimensional inversion.

摘要

大规模三维电磁数据的定量解释需要发展高效、 稳定的三维正反演算法。 正演是反演的前提和基础, 本文对正演问题开展深入研究, 实现了适用于陆地电磁勘探的频率域可控源电磁三维正演。 首先, 基于麦克斯韦方程组推导得到关于电场的亥姆霍兹方程, 通过伽辽金法建立了基于棱边元的有限元方程。 控制方程经过矢量有限元离散化后得到大型、 对称、 稀疏复线性方程组, 为了实现高效求解该线性方程组, 选用了不完全 Cholesky 分解预处理的迭代解法进行求解。 其次, 通过对均匀半空间模型的矢量有限元模拟计算, 数值结果与解析解的对比验证了本文算法的正确性。 最后, 对电性三维地电模型进行数值模拟, 计算的电磁响应均能反应出异常体的存在, 进一步说明本文算法能够对频率域可控源电磁三维进行有效模拟。 因此, 本文矢量有限元算法的成功实现可用于三维电磁响应的分析计算, 并有助于研究陆地三维频率域可控源电磁响应的分布规律, 同时也能为三维频率域可控源电磁法反演研究奠定基础。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WHITE D, BOERNER D, WU J, LUCAS S, BERRER E, HANNILA J, SOMERVILLE R. Mineral exploration in the Thompson nickel belt, Manitoba, Canada, using seismic and controlled-source EM methods [J]. Geophysics, 2000, 65(6): 1871–1881.

    Article  Google Scholar 

  2. CONSTABLE S, SRNKA L J. Special section-marine controlled-source electromagnetic methods an introduction to marine controlled-source electromagnetic methods for hydrocarbon exploration [J]. Geophysics, 2007, 72(2): WA3–WA12.

    Article  Google Scholar 

  3. MACGREGOR L, SINHA M, CONSTABLE S. Electrical resistivity structure of the Valu Fa Ridge, Lau Basin, from marine controlled-source electromagnetic sounding [J]. Geophysical Journal International, 2001, 146(1): 247–236.

    Article  Google Scholar 

  4. AVDEEV D B, KUVSHINOV A V, PANKRATOV O V, NEWMAN G A. Three-dimensional induction logging problems, Part 1: An integral equation solution and model comparisons [J]. Geophysics, 2002, 67(2): 413–426.

    Article  Google Scholar 

  5. HURSAN G, ZHDANOV M S. Contraction integral equation method in 3-D electromagnetic modeling [J]. Radio Science, 2002, 37(6): 1089.

    Article  Google Scholar 

  6. LIU Jian-xin, JIANG Peng-fei, TONG Xiao-zhong, XU Ling-hua, XIE Wei, WANG Hao. Application of BICGSTAB algorithm with incomplete LU decomposition preconditioning to two-dimensional magnetotelluric forward modeling [J]. Journal of Central South University: Science and Technology, 2009, 40(4): 485–490. (in Chinese)

    Google Scholar 

  7. ZHDANOV M S, LEE S K, YOSHIOKA K. Integral equation method for 3Dmodeling of electromagnetic fields in complex structures with inhomogeneous background conductivity [J] Geophysics, 2006, 71(6): G333–G345.

    Article  Google Scholar 

  8. HABER E, ASCHER U, ARULIAH D, OLDENBURG D. Fast simulation of 3D electromagnetic problems using potentials [J]. Journal of Computational Physics, 2000, 163(1): 150–171.

    Article  MATH  Google Scholar 

  9. HAN N, NAM M J, KIM H J, SONG Y, SUH J H. A comparison of accuracy and computation time of threedimensional magnetotelluric modelling algorithms [J]. Journal of Geophysics and Engineering, 2009, 6(2): 136–145.

    Article  Google Scholar 

  10. MEHANEE S, ZHDANOV M. A quasi-analytical boundary condition for three-dimensional finite difference electromagnetic modeling [J]. Radio Science, 2004, 39(6): RS6014.

    Article  Google Scholar 

  11. NEWMAN G A, ALUMBAUGH D L. Frequency-domain modeling of airborne electromagnetic responses using staggered finite differences [J]. Geophysical Prospecting, 1995, 43(8): 1021–1042.

    Article  Google Scholar 

  12. STREICH R. 3D finite-difference frequency-domain modeling of controlled-source electromagnetic data: Direct solution and optimization for high accuracy [J]. Geophysics, 2009, 74(5): F95–F105.

    Article  Google Scholar 

  13. WEISS C J, CONSTABLE S. Mapping thin resistors and hydrocarbons with marine EM methods, part II-modeling and analysis in 3D [J]. Geophysics, 2006, 71(6): G321–G332.

    Article  Google Scholar 

  14. BÖRNER R U, ERNST O G, AND SPITZER K. Fast 3-D simulation of transient electromagnetic fields by model reduction in the frequency domain using Krylov subspace projection [J]. Geophysical Journal International, 2008, 173(3): 766–780.

    Article  Google Scholar 

  15. da SILVA N V, MORGAN J V, MACGREGOR L, WARNER M. A finite element mutifrontal method for 3D CSEM modeling in the frequency domain [J]. Geophysics, 2012, 77(2): E101–E115.

    Article  Google Scholar 

  16. MUKHERJEE S, EVERETT M E. 3Dcontrolled-source electromagnetic edge-based finite element modeling of conductive and permeable heterogeneities [J]. Geophysics, 2011, 76(4): F215–F226.

    Article  Google Scholar 

  17. NAM M J, KIM H J, SONG Y, LEE T J, SON J S, SUH J H. 3D magnetotelluric modelling including surface topography [J]. Geophysical Prospecting, 2007, 55(2): 277–287.

    Article  Google Scholar 

  18. UM E, HARRIS J M, ALUMBAUGH D L. 3D time-domain simulation of electromagnetic diffusion phenomena: A finiteelement electric-field approach [J]. Geophysics, 2010, 75(4): F115–F126.

    Article  Google Scholar 

  19. FARQUHARSON C G, MIENSOPUST M P. Threedimensional finite-element modelling of magnetotelluric data with a divergence correction [J]. Journal of Applied Geophysics, 2011, 75(4): 699–710.

    Article  Google Scholar 

  20. JIN J M. The finite element method in electromagnetics [M]. 2nd ed. New York: John Wiley & Sons, 2002.

    MATH  Google Scholar 

  21. SAAD Y. Iterative methods for sparse linear systems [M]. 2nd ed London: Cambridge University Press, 2002.

    Google Scholar 

  22. KAUFMAN A A, KELLER G V. Frequency and Transient Soundings (Methods in Geochemistry and Geophysics) [M]. Elsevier Science Press, 1983.

    Google Scholar 

  23. CAI Hong-zhu, XIONG Bin, MICHAEL Z. Threedimensional marine controlled-source electromagnetic modeling in anisotropic medium using finite element method [J]. Chinese Journal of Geophysics, 2015, 58(8): 2839–2850. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-zhong Tong  (童孝忠).

Additional information

Foundation item: Projects(41674080, 41674079) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Jx., Liu, Pm. & Tong, Xz. Three-dimensional land FD-CSEM forward modeling using edge finite-element method. J. Cent. South Univ. 25, 131–140 (2018). https://doi.org/10.1007/s11771-018-3723-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3723-x

Key words

关键词

Navigation