Skip to main content
Log in

An enhanced artificial bee colony optimizer and its application to multi-level threshold image segmentation

增强性人工蜂群算法及在多阀值图像分割中的应用

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A modified artificial bee colony optimizer (MABC) is proposed for image segmentation by using a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff. The main idea of MABC is to enrich artificial bee foraging behaviors by combining local search and comprehensive learning using multi-dimensional PSO-based equation. With comprehensive learning, the bees incorporate the information of global best solution into the solution search equation to improve the exploration while the local search enables the bees deeply exploit around the promising area, which provides a proper balance between exploration and exploitation. The experimental results on comparing the MABC to several successful EA and SI algorithms on a set of benchmarks demonstrated the effectiveness of the proposed algorithm. Furthermore, we applied the MABC algorithm to image segmentation problem. Experimental results verify the effectiveness of the proposed algorithm.

摘要

提出了一种改进的人工蜂群算法来处理图像分割问题, 具体采用一系列群体优化觅食策略来平衡开发和探测寻优模式。 该算法的主要思想是将局部搜索策略和基于多维粒子群方程的复杂学习策略相结合, 可丰富人工蜂群觅食行为模式。 通过全局学习, 蜂群把全局最优信息整合到搜索方程中以提高探测搜索能力, 同时局部搜索使蜂群能更深层探索优势区域, 最终取得开发和探索平衡。 通过比较该改进蜂群算法和进化算法、 群智能算法在一系列基准函数上的实验结果, 表明本文所提出的算法的有效性。 将改进蜂群算法应用于处理图像分割问题, 实验结果也证明了该算法的有效性

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KITTLER J, ILLINGWORTH J. Minimum error threshold [J]. Pattern Recognition, 1986, 19: 41–47.

    Article  Google Scholar 

  2. PUN T. Entropic thresholding, a new approach [J]. Computer Graphics & Image Processing, 1981, 16(3): 210–239.

    Article  Google Scholar 

  3. OTSU N. A threshold selection method from gray-level histograms [J]. IEEE Transactions on Systems Man & Cybernetics, 2007, 9(1): 62–66.

    Article  MathSciNet  Google Scholar 

  4. KAPUR J N, SAHOO P K, WONG A K C. A new method for gray-level picture thresholding using the entropy of the histogram [J]. Computer Vision Graphics & Image Processing, 1985, 29(3): 273–285.

    Article  Google Scholar 

  5. LIM Y W, SANG U L. On the color image segmentation algorithm based on the thresholding and the fuzzy c-means techniques [J]. Pattern Recognition, 1990, 23(9): 935–952.

    Article  Google Scholar 

  6. TSAI D M. A fast thresholding selection procedure for multimodal and unimodal histograms [J]. Pattern Recognition Letters, 1995, 16(6): 653–666.

    Article  Google Scholar 

  7. YIN P Y, CHEN L H. A new method for multilevel thresholding using symmetry and duality of the histogram [J]. Journal of Electronic Imaging, 1993, 2(4): 337–345.

    Article  Google Scholar 

  8. BRINK A D. Minimum spatial entropy threshold selection [J]. IEE Proceedings-Vision, Image and Signal Processing, 1995, 142(3): 128–132.

    Article  Google Scholar 

  9. CHENG H D, CHEN J R, LI J. Threshold selection based on fuzzy c-partition entropy approach [J]. Pattern Recognition, 1998, 31(7): 857–870.

    Article  Google Scholar 

  10. HUANG L K, WANG M J J. Image thresholding by minimizing the measures of fuzziness [J]. Pattern Recognition, 1995, 28(1): 41–51.

    Article  Google Scholar 

  11. CHANDER A, CHATTERJEE A, SIARRY P. A new social and momentum component adaptive PSO algorithm for image segmentation [J]. Expert Systems with Applications, 2011, 38(5): 4998–5004.

    Article  Google Scholar 

  12. MA L, HU K, ZHU Y, et al. A hybrid artificial bee colony optimizer by combining with life-cycle, Powell’s search and crossover [J]. Applied Mathematics & Computation, 2015, 252: 133–154.

    Article  MATH  Google Scholar 

  13. GAO H, XU W, SUN J, et al. Multilevel thresholding for image segmentation through an improved quantum-behaved particle swarm algorithm [J]. IEEE Transactions on Instrumentation & Measurement, 2010, 59(4): 934–946.

    Article  Google Scholar 

  14. GHAMISI P, COUCEIRO M S, MARTINS F M L, et al. Multilevel image segmentation based on fractional-order Darwinian particle swarm optimization [J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(5): 2382–2394.

    Article  Google Scholar 

  15. CUEVAS E, ZALDIVAR D, PÉREZ-CISNEROS M. A novel multi-threshold segmentation approach based on differential evolution optimization [J]. Expert Systems with Applications, 2010, 37(7): 5265–5271.

    Article  Google Scholar 

  16. GAO H, KWONG S, YANG J, et al. Particle swarm optimization based on intermediate disturbance strategy algorithm and its application in multi-threshold image segmentation [J]. Information Sciences, 2013, 250(11): 82–112.

    Article  MathSciNet  Google Scholar 

  17. KARABOGA D. An idea based on honey bee swarm for numerical optimization [R]. Technical report-tr06. Erciyes University, Computer Engineering Department, 2005.

    Google Scholar 

  18. KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm [J]. Journal of Global Optimization, 2007, 39(3): 459–471.

    Article  MathSciNet  MATH  Google Scholar 

  19. MA L, HU K, ZHU Y, et al. A hybrid artificial bee colony optimizer by combining with life-cycle, Powell’s search and crossover [J]. Applied Mathematics & Computation, 2015, 252: 133–154.

    Article  MATH  Google Scholar 

  20. MA L, HU K, ZHU Y, et al. Cooperative artificial bee colony algorithm for multi-objective RFID network planning [J]. Journal of Network & Computer Applications, 2014, 42: 143–162.

    Article  Google Scholar 

  21. MA L, ZHU Y, ZHANG D, et al. A hybrid approach to artificial bee colony algorithm [J]. Neural Computing & Applications, 2016, 27(2): 387–409.

    Article  Google Scholar 

  22. POWELL M J D. Restart procedures for the conjugate gradient method [J]. Mathematical Programming, 1977, 12(1): 241–254.

    Article  MathSciNet  MATH  Google Scholar 

  23. SUMATHI S, HAMSAPRIYA T, SUREKHA P. Evolutionary intelligence: An introduction to theory and applications with Matlab [M]. Springer Science & Business Media, 2008.

    Google Scholar 

  24. WOLPERT D H, MACREADY W G. No free lunch theorems for optimization [J]. IEEE Transactions on Evolutionary Computation, 1997, 1(1): 67–82.

    Article  Google Scholar 

  25. MA L, HU K, ZHU Y, et al. Discrete and continuous optimization based on hierarchical artificial bee colony optimizer [J]. Journal of Applied Mathematics, 2014, 2014(1): 1–20.

    Google Scholar 

  26. MA L, ZHU Y, LIU Y, et al. A novel bionic algorithm inspired by plant root foraging behaviors [J]. Applied Soft Computing, 2015, 37(C): 95–113.

    Article  Google Scholar 

  27. LIANG J J, QIN A K, SUGANTHAN P N, et al. Comprehensive learning particle swarm optimizer for global optimization of multimodal functions [J]. IEEE Transactions on Evolutionary Computation, 2006, 10(3): 281–295.

    Article  Google Scholar 

  28. CLERC M, KENNEDY J. The particle swarm - explosion, stability, and convergence in a multidimensional complex space [J]. IEEE Transactions on Evolutionary Computation, 2002, 6(1): 58–73.

    Article  Google Scholar 

  29. HANSEN N, OSTERMEIER A. Completely derandomized self-adaptation in evolution strategies [J]. Evolutionary Computation, 2001, 9(2): 159–195.

    Article  Google Scholar 

  30. KAPUR J N, SAHOO P K, WONG A K C. A new method for gray- level picture thresholding using the entropy of the histogram [J]. Computer Vision Graphics & Image Processing, 1985, 29(3): 273–285.

    Article  Google Scholar 

  31. YIN P. Multilevel minimum cross entropy threshold selection based on particle swarm optimization [J]. Applied Mathematics & Computation, 2007, 184(2): 503–513.

    Article  MathSciNet  MATH  Google Scholar 

  32. CAO L, BAO P, SHI Z. The strongest schema learning GA and its application to multilevel thresholding [J]. Image & Vision Computing, 2008, 26(5): 716–724.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Gao  (高扬).

Additional information

Foundation item: Projects(6177021519, 61503373) supported by National Natural Science Foundation of China; Project(N161705001) supported by Fundamental Research Funds for the Central University, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, Y., Li, X., Dong, M. et al. An enhanced artificial bee colony optimizer and its application to multi-level threshold image segmentation. J. Cent. South Univ. 25, 107–120 (2018). https://doi.org/10.1007/s11771-018-3721-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-018-3721-z

Key words

关键词

Navigation