Skip to main content
Log in

Impact of low/high-κ spacer–source overlap on characteristics of tunnel dielectric based tunnel field-effect transistor

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The effects of low-κ and high-κ spacer were investigated on the novel tunnel dielectric based tunnel field-effect transistor (TD-FET) mainly based upon ultra-thin dielectric direct tunneling mechanism. Drive currents consist of direct tunneling current and band-to-band tunneling (BTBT) current. Meanwhile, tunneling position of the TD-FET differs from conventional tunnel-FET in which the electron and hole tunneling occur at intermediate rather than surface in channel (or source-channel junction under gate dielectric). The 2-D nature of TD-FET current flow is also discussed that the on-current is degraded with an increase in the spacer width. BTBT current will not begin to play part in tunneling current until gate voltage is 0.2 V. We clearly identify the influence of the tunneling dielectric layer and spacer electrostatic field on the device characteristics by numerical simulations. The inserted Si3N4 tunnel layer between P+ region and N+ region can significantly shorten the direct and band-to-band tunneling path, so a reduced subthreshold slope (S S) and a high on-current can be achieved. Above all the ambipolar current is effectively suppressed, thus reducing off-current. TD-FET demonstrates excellent performance for low-power applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BOUCART K, IONESCU A M. Double-gate tunnel FET with high-κ gate dielectric [J]. IEEE Trans Electron Devices, 2007, 54: 1725–1733. DOI:10.1109/TED.2007.899389.

    Article  Google Scholar 

  2. ANGHEL C, CHILAGANI P, AMARA A. Tunnel field effect transistor with increased ON current, low-k spacer and high-κ dielectric [J]. Applied Physics Letters, 2011, 96: 12104. DOI: 10.1063/1.3367880.

    Google Scholar 

  3. JIANG Z, ZHUANG Y Q. Drive current enhancement in TFET by dual source region [J]. Journal of Electrical and Computer Engineering, 2015, 905718. DOI: 10.1155/2015/905718.

    Google Scholar 

  4. JIANG Z, ZHUANG Y Q. Impact of interface traps on direct and alternating current in tunneling field-effect transistors [J]. Journal of Electrical and Computer Engineering, 2015, 630178. DOI: 10.1155/2015/630178.

    Google Scholar 

  5. SEO J H, YOON Y J. Design and analysis of Si-based arch-shaped gate-all-around (GAA) tunneling field-effect transistor (TFET) [J]. Current Applied Physics, 2015, 15: 208–212. DOI: 10.1109/ICOIN. 2016.7427155.

    Article  Google Scholar 

  6. VLADIMIRESCU HRAZIIA A, AMARA A. An analysis on the ambipolar current in Si double-gate tunnel FETs[J] Solid-State Electronics, 2012, 70: 67–72. DOI: 10.1016/j.sse.2011.11.009.

    Article  Google Scholar 

  7. HURKX G A M, KLAASSEN D B M. A new recombination model for device simulation including tunneling [J]. IEEE Trans Electron Devices, 1992, 39: 331–338. DOI: 10.1109/16.121690.

    Article  Google Scholar 

  8. IONESCU A M, RIEL H. Tunnel field-effect transistors as energyefficient electronic switches [J]. Nature, 2011, 479: 329–337. DOI: 10.1109/IEDM.2015.7409755.

    Article  Google Scholar 

  9. FORD ALEXANDRA C, YEUNG C W, CHUANG S. Ultrathin body InAs tunneling field-effect transistors on Si substrates [J]. Applied Physics Letters, 2011, 98: 113105. DOI: 10.1063/1.3567021.

    Article  Google Scholar 

  10. RAJAMOHANAN B, MOHATA D. Insight into the output characteristics of III-V tunneling field effect transistors [J]. Applied Physics Letters, 2013, 102: 092105. DOI: 10.1063/1.4794536.

    Article  Google Scholar 

  11. CHIEN N D, VINH L T. Drive current enhancement in tunnel field-effect transistors by graded heterojunction approach [J]. Journal of Applied Physics, 2013, 114: 094507. DOI: 10.1063/1.4820011.

    Article  Google Scholar 

  12. MALLIK A, CHATTOPADHYAY A. The impact of fringing field on the device performance of a p-Channel tunnel field-effect transistor with a high-κ gate dielectric [J]. IEEE Trans Electron Devices, 2012, 59(2): 277–282. DOI: 10.1109/TED.2011.2173937.

    Article  Google Scholar 

  13. MALLIK A, CHATTOPADHYAY A. Tunnel field-effect transistors for Analog/Mixed-Signal system-on-chip applications [J]. IEEE Trans Electron Devices, 2012, 59(4): 888–894. DOI: 10.1109/TED.2011.2181178.

    Article  Google Scholar 

  14. KAO K H, VERHULST ANNE S. Direct and indirect band-to-band tunneling in germanium-based TFETs [J]. IEEE Trans Electron Devices, 2012, 59(2): 292–301. DOI: 10.1109/TED. 2011.2175228.

    Article  Google Scholar 

  15. CHANG Hsu-Yu, ADAMS B. Improved subthreshold and output characteristics of source-pocket Si tunnel FET by the application of laser annealing [J]. IEEE Trans Electron Devices, 2013, 60(1): 92–96. DOI: 10.1109/TED.2012.2228006.

    Article  Google Scholar 

  16. LU Ye-qing, ZHOU Guang-le. Performance of AlGaSb/InAs TFETs with gate electric field and tunneling direction aligned [J]. IEEE Electron Device Letters, 2012, 33(5): 92–96. DOI: 10.1109/LED.2012.2186554.

    Article  Google Scholar 

  17. WAN J, ZASLAVSKY C. A tunneling FETs on SOI: Suppression of ambipolar leakage, low-frequency noise behavior, and modeling [J]. Solid-State Electronics, 2012, 2011: 226–233. DOI: 10.1016/j.sse. 2011.06.012.

    Google Scholar 

  18. MORITA Y, MORI T. Performance enhancement of tunnel field-effect transistors by synthetic electric field effect [J]. IEEE Trans Electron Devices, 2014, 35(7): 792–794. DOI: 10.1109/LED.2014.2323337.

    Article  Google Scholar 

  19. KNOLL L, SCHMIDT M. Si tunneling transistors with high on-currents and slopes of 50 mV/dec using segregation doped NiSi2tunnel junctions [J]. Solid-State Electronics, 2013. 84: 211–215. DOI: 10.1016/j.sse.2013.02.028.

    Article  Google Scholar 

  20. GNANI E, GNUDI A. Drain-conductance optimization in nanowire TFETs by means of a physics-based analytical model [J]. Solid-State Electronics, 2013, 84: 96–102. DOI: 10.1016/j.sse.2013.02.012.

    Article  Google Scholar 

  21. LUO Z J, WANG H F. A tunnel dielectric-based tunnel FET [J]. IEEE Trans. Electron Devices, 2015, 36(9): 966–968. DOI: 10.1109/LED.2015.2458932.

    Article  Google Scholar 

  22. ZHANG Q. LU Y Q. Optimum bandgap and supply voltage in tunnel FETs [J]. IEEE Trans Electron Devices, 2014. 61(8): 2174–2179. DOI: 10.1109/TED.2014.2330805.

    Article  Google Scholar 

  23. YANG Y, GUO P F. Simulation of tunneling field-effect transistors with extended source structures [J]. Journal of Applied Physics, 2012, 111: 114514. DOI: 10.1063/1.4729068.

    Article  Google Scholar 

  24. ALPIR C, MICHIELIS C D, PALESTRI P, SELMI L. Quantum mechanical study of the germanium election-hole bilayer tunnel FET [J]. IEEE Trans on Electron Devices, 2013, 60(9): 2754–2760. DOI: 10.11091TED.2013.22741.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Jiang  (蒋智).

Additional information

Foundation item: Projects(61574109, 61204092) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Zhuang, Yq., Li, C. et al. Impact of low/high-κ spacer–source overlap on characteristics of tunnel dielectric based tunnel field-effect transistor. J. Cent. South Univ. 24, 2572–2581 (2017). https://doi.org/10.1007/s11771-017-3671-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-017-3671-x

Keywords

Navigation