Skip to main content
Log in

Model predictive control synthesis algorithm based on polytopic terminal region for Hammerstein-Wiener nonlinear systems

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

An improved model predictive control algorithm is proposed for Hammerstein-Wiener nonlinear systems. The proposed synthesis algorithm contains two parts: offline design the polytopic invariant sets, and online solve the min-max optimization problem. The polytopic invariant set is adopted to replace the traditional ellipsoid invariant set. And the parameter-correlation nonlinear control law is designed to replace the traditional linear control law. Consequently, the terminal region is enlarged and the control effect is improved. Simulation and experiment are used to verify the validity of the wind tunnel flow field control algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. WANG D, DING F. Extended stochastic gradient identification algorithms for Hammerstein-Wiener ARMAX systems [J]. Computers & Mathematics with Applications, 2008, 56(12): 3157–3164.

    Article  MATH  MathSciNet  Google Scholar 

  2. WANG D, DING F. Hierarchical least squares estimation algorithm for Hammerstein-Wiener systems [J]. IEEE Signal Processing Letters, 2012, 19(12): 825–827.

    Article  Google Scholar 

  3. SUNG S W, JE C H, LEE J, LEE D H. Improved system identificat ion method for Hammerstein-Wiener processes [J]. Korean Journal of Chemical Engineering, 2008, 25(4): 631–636.

    Article  Google Scholar 

  4. PATCHARAPRAKITI N, KIRTIKARA K, MONYAKUL V, CHENVIDHY A D, THONGPRON J, SANGSWANG A. Modeling of single phase inverter of photovoltaic system using Hammerstein-Wiener nonlinear system identification [J]. Current Applied Physics, 2010, 10(3): 532–536.

    Article  Google Scholar 

  5. XI Yu-geng, LI De-wei. Fundamental philosophy and status of qualitative synthesis of model predictive control [J]. Acta Automatica Sinica, 2008, 34(10): 1225–1234.

    Article  MATH  MathSciNet  Google Scholar 

  6. PATIKIRIKORALA T, WANG L, COLMAN A, HAN J. Hammerstein-Wiener nonlinear model based predictive control for relative QoS performance and resource management of software systems [J]. Control Engineering Practice, 2012, 20(1): 49–61.

    Article  Google Scholar 

  7. BLOEMEN H H J, van den BOOM T J J, VERBRUGGEN H B. Model-based predictive control for Hammerstein-Wiener systems [J]. International Journal of Control, 2001, 74(5): 482–495.

    Article  MATH  MathSciNet  Google Scholar 

  8. KOUVARITAKIS B, ROSSITER J A, SCHUURMANS J. Efficient robust predictive control [J]. IEEE Transactions on Automatic Control, 2000, 45(8): 1545–1549.

    Article  MATH  MathSciNet  Google Scholar 

  9. WAN Z, KOTHARE M V. An efficient off-line formulation of robust model predictive control using linear matrix inequalities [J]. Automatica, 2003, 39(5): 837–846.

    Article  MATH  MathSciNet  Google Scholar 

  10. DING Bao-cang, YANG Peng. Synthesizing off-line robust model predictive controller based on nominal performance cost [J]. Acta Automatica Sinica, 2006, 32(2): 304–310.

    Google Scholar 

  11. LI Yan, CHEN Xue-yuan, MAO Zhi-zhong, YUAN Ping. An improved constrained model predictive control approach for Hammerstein-Wiener nonlinear systems [J]. Journal of Central South University, 2014, 21(3): 926–932.

    Article  Google Scholar 

  12. YAU H T. Generalized projective chaos synchronization of gyroscope systems subjected to deadzone nonlinear inputs [J]. Physics Letters A, 2008, 372(14): 2380–2385.

    Article  MATH  Google Scholar 

  13. WANG D, CHU Y, YANG G, DING F. Auxiliary model based recursive generalized least squares parameter estimation for Hammerstein OEAR systems [J]. Mathematical and Computer Modelling, 2010, 52(1): 309–317.

    Article  MATH  MathSciNet  Google Scholar 

  14. ZHANG You-wang, GUI Wei-hua. Compensation for secondary uncertainty in electro-hydraulic servo system by gain adaptive sliding mode variable structure control [J]. Journal of Central South University of Technology, 2008, 15(2): 256–263.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Li  (李妍).

Additional information

Foundation item: Project(61074074) supported by the National Natural Science Foundation, China; Project(KT2012C01J0401) supported by the Group Innovation Fund, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Chen, Xy. & Mao, Zz. Model predictive control synthesis algorithm based on polytopic terminal region for Hammerstein-Wiener nonlinear systems. J. Cent. South Univ. 24, 2028–2034 (2017). https://doi.org/10.1007/s11771-017-3612-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-017-3612-8

Key words

Navigation