Skip to main content
Log in

Spatiotemporal distribution model for zinc electrowinning process and its parameter estimation

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

This paper focuses on the distributed parameter modeling of the zinc electrowinning process (ZEWP) to reveal the spatiotemporal distribution of concentration of zinc ions (CZI) and sulfuric acid (CSA) in the electrolyte. Considering the inverse diffusion of such ions in the electrolyte, the dynamic distribution of ions is described by the axial dispersion model. A parameter estimation strategy based on orthogonal approximation has been proposed to estimate the unknown parameters in the process model. Different industrial data sets are used to test the effectiveness of the spatiotemporal distribution model and the proposed parameter estimation approach. The results demonstrate that the analytical model can effectively capture the trends of the electrolysis reaction in time and thus has the potential to implement further optimization and control in the ZEWP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHANG Bin, YANG Chun-hua, ZHU Hong-qiu, LI Yong-gang, GUI Wei-hua. Kinetic modeling and parameter estimation for competing reactions in copper removal process from zinc sulfate solution [J]. Industrial & Engineering Chemistry Research, 2013, 52(48): 17074–17086.

    Article  Google Scholar 

  2. SUN Bei, GUI Wei-hua, WU Tie-bin, WANG Ya-lin, YANG Chun-hua. An integrated prediction model of cobalt ion concentration based on oxidation–reduction potential [J]. Hydrometallurgy, 2013, 140: 102–110.

    Article  Google Scholar 

  3. HERRERO D, ARIAS P L, GÜEMEZ B, BARRIO V L, CAMBRA J F, REQUIES J. Hydrometallurgical process development for the production of a zinc sulphate liquor suitable for electrowinning [J]. Mineral Engineering, 2010, 23(6): 511–517.

    Article  Google Scholar 

  4. BARTON G W, SCOTT A C. Scale-up effects in modelling a full-size zinc electrowinning cell [J]. Journal of Applied Electrochemistry, 1992, 22(8): 687–692.

    Article  Google Scholar 

  5. MAHON M, PENG S, ALFANTAZI A. Application and optimization studies of a zinc electrowinning process simulation [J]. Canadian Journal of Chemical Engineering, 2014, 92: 633–642.

    Article  Google Scholar 

  6. WANG Ya-lin, Gui Wei-hua, YANG Chun-hua, HUANG Tai-song. Intelligent modeling and optimization on time-sharing power dispatching system for electrolytic zinc process [J]. Transactions of Nonferrous Metals Society of China, 2000, 10(4): 561–565.

    Google Scholar 

  7. BAHRAM B, JAVAD M. Statistical evaluation and optimization of zinc electrolyte hot purification process by Taguchi method [J]. Journal of Central South University, 2015, 22(6): 2066–2072.

    Article  Google Scholar 

  8. YANG Chun-hua, DECONINCK G, GUI Wei-hua, LI Yong-gang. An optimal power-dispatching system using neural networks for the electrochemical process of zinc depending on varying prices of electricity [J]. IEEE Transactions on Neural Network, 2002, 13(1): 229–236.

    Article  Google Scholar 

  9. BARTON G W, SCOTT A C. Industrial applications of a mathematical model for the zinc electrowinning process [J]. Journal of Applied Electrochemistry, 1994, 24(5): 377–383.

    Article  Google Scholar 

  10. MAHON M, WASIK L, ALFANTAZI A. Development and implementation of a zinc electrowinning process simulation [J]. Journal of Applied Electrochemistry, 2012, 159(8): D486–D492.

    Article  Google Scholar 

  11. ZHANG Qi-bo, HUA Yi-xin, DONG Tie-guang, ZHOU Dan-gui. Effects of temperature and current density on zinc electrodeposition from acidic sulfate electrolyte with H2SO4 as additive [J]. Journal of Applied Electrochemistry, 2009, 39(8): 1207–1216.

    Article  Google Scholar 

  12. GUI Wei-hua, YANG Chun-hua, CHEN Xiao-fang, WANG Ya-lin. Modeling and optimization problems and challenges arising in nonferrous metallurgical processes [J]. Acta Automatic Sinica, 2013, 39(3): 197–207.

    Article  Google Scholar 

  13. DENG Shi-jun, YANG Chun-hua, LI Yong-gang, ZHU Hong-qiu. On-line prediction model for concentrations of zinc ion and sulfuric acid in zinc electrowinning process [J]. Chinese Journal of Chemical Engineering, 2015, 66(7): 2588–2594.

    Google Scholar 

  14. GUI Wei-hua, ZHANG Mei-ju, YANG Chun-hua, LI Yong-gang. Energy consumption optimization of zinc electrolysis process based on hybrid particle swarm algorithm [J]. Control Engineering of China, 2009, 16(6): 748–751.

    Google Scholar 

  15. CHARTON S, DUHAMET J, BORDA G, ODE D. Axial dispersion in pulsed disk and doughnut columns: A unified law [J]. Chemical Engineering Science, 2012, 75(0): 468–477.

    Article  Google Scholar 

  16. LI Han-xiong, QI Chen-kun. Modeling of distributed parameter systems for applications-A synthesized review from time-space separation [J]. Journal of Process Control, 2010, 20(8): 891–901.

    Article  Google Scholar 

  17. BONIS I, XIE Wei-guo, THEODOROPOULOS C. Multiple model predictive control of dissipative pde systems [J]. IEEE Transactions on Control Systems Technology, 2014, 22(3): 1206–1214.

    Article  Google Scholar 

  18. XIANG Xiu-qiao, ZHOU Jiang-zhong, LI Mo, LUO Zhi-meng, LI Chao-shun. Improved algorithm about NSFOT [J]. Applied Mathematics & Computation, 2009, 215(3): 881–888.

    Article  MATH  MathSciNet  Google Scholar 

  19. STANKOVIC A M, LEV-ARI H, PERISIC M M. Analysis and implementation of model-based linear estimation of dynamic phasors [J]. IEEE Transactions on Power System, 2004, 19(4): 1903–1910.

    Article  Google Scholar 

  20. ABBASBANDY S, KAZEM S, ALHUTHALI M S, ALSULAMI H H. Application of the operational matrix of fractional-order Legendre functions for solving the time-fractional convection–diffusion equation [J]. Applied Mathematics & Computation, 2015, 266: 31–40.

    Article  MathSciNet  Google Scholar 

  21. LEPIK U. Solving fractional integral equations by the Haar wavelet method [J]. Applied Mathematics & Computation, 2009, 214(2): 468–478.

    Article  MATH  MathSciNet  Google Scholar 

  22. LI Yuan-lu, SUN Ning. Numerical solution of fractional differential equations using the generalized block pulse operational matrix [J]. Computers & Mathematics with Applications, 2011, 62(3): 1046–1054.

    Article  MATH  MathSciNet  Google Scholar 

  23. MALEKNEJAD L, SOHRABI S, BARAJI B. Application of 2D-BPFs to nonlinear integral equations [J]. Communications in Nonlinear Science & Numerical Simulation, 2010, 15(3): 527–535.

    Article  MATH  MathSciNet  Google Scholar 

  24. YU Shou-yi, CAO Yue-bin, ZHOU Xuan. Parameter identification for vertical quench furnace control system based on orthogonal function [J]. Control Engineering of China, 2009, 16(3): 251–253.

    Google Scholar 

  25. PAN Jun-li, WEN Yue-hua, CHENG Jie, PAN Jun-qing, BAI Zhang-li, YANG Yu-sheng. Zinc deposition and dissolution in sulfuric acid onto a graphite-resin composite electrode as the negative electrode reactions in acidic zinc-based redox flow batteris [J]. Journal of Applied Electrochemistry, 2013, 43: 541–551.

    Article  Google Scholar 

  26. YU Jiang-xian, YANG Han-xi, AI Xin-ping, CHEN Yong-yan. Effect of anions on the zinc electrodeposition onto glassy-carbon electrode [J]. Russian Journal of Electrochemistry, 2002, 38(3): 321–325.

    Article  Google Scholar 

  27. SUNG BAE KIM, LEE Y. Diffusion of sulfuric acid within lignocellulosic biomass particles and its impact on dilute-acid pretreatment [J]. Bioresource Technology, 2002, 83(2): 165–171.

    Article  Google Scholar 

  28. LI Yong-gang, GUI Wei-hua, TEO KOK LAY, ZHU Hong-qiu, CHAI Qin-qin. Optimal control for zinc solution purification based on interacting CSTR models [J]. Journal of Process Control, 2012, 22(10): 1878–1889.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-gang Li  (李勇刚).

Additional information

Foundation item: Project(61673400) supported by the National Natural Science Foundation of China; Project(2015cx007) supported by the Innovation-driven Plan in Central South University, China; Project(61321003) supported by the Foundation for Innovative Research Groups of the National Natural Science Foundation of China; Projects(61590921, 61590923) supported by the Major Program of the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, Sj., Yang, Ch., Li, Yg. et al. Spatiotemporal distribution model for zinc electrowinning process and its parameter estimation. J. Cent. South Univ. 24, 1968–1976 (2017). https://doi.org/10.1007/s11771-017-3605-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-017-3605-7

Key words

Navigation