Advertisement

Journal of Central South University

, Volume 24, Issue 8, pp 1713–1719 | Cite as

Elasticity under pressure and thermal property of Mg2La from first-principles calculations

  • Xiao-feng Niu (牛晓峰)Email author
  • Zhi-wei Huang (黄志伟)
  • Lei Hu (胡磊)
  • Han Wang (王涵)
  • Bao-jian Wang (王宝健)
Article
  • 58 Downloads

Abstract

The elastic properties, thermodynamic and electronic structures of Mg2La were investigated by using first-principles. The calculated results show that pressure affects the elastic constants of C 11 more than that of C 12 and C 44. Specifically, higher pressure leads to greater bulk modulus (B), shear modulus (G), and elastic modulus (E). We predict B/G and anisotropy factor A based on the calculated elastic constants. The Debye temperature also increases with increasing pressure. Based on the quasi-harmonic Debye model, we examined the thermodynamic properties. These properties include the normalized volume (V/V 0), bulk modulus (B), heat capacity (C v), thermal expansion coefficient (α), and Debye temperature (Θ). Finally, the electronic structures associated with the density of states (DOS) and Mulliken population are analyzed.

Key words

first-principles elastic properties thermodynamics properties electronic structure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    POTZIES C, KAINERK U. Fatigue of magnesium alloys [J]. Advanced Engineering Materials, 2004, 6(6): 281–289.CrossRefGoogle Scholar
  2. [2]
    BLAWERT C, HORTN, KAINERK U. Automotive applications of magnesium and its alloys [J]. Transactions of the Indian Institute of Metals, 2004, 57(4): 397–408.Google Scholar
  3. [3]
    NIE J F. Preface to viewpoint set on: Phase transformations and deformation in magnesium alloys [J]. Scripta Materialia, 2003, 48: 981–984.CrossRefGoogle Scholar
  4. [4]
    MORDIKE B L, EBERT T. Magnesium: Properties–applications-potential [J]. Materials Science and Engineering A, 2001, 302: 37–45.CrossRefGoogle Scholar
  5. [5]
    WANG Yu-fei, ZHANG Wei-bing, WANG Zhi-zhong. Firstprinciples study of structural stabilities and electronic characteristics of Mg-La intermetallic compounds [J]. Computational Materials Science, 2007, 41(1): 78–85.CrossRefGoogle Scholar
  6. [6]
    CHEN Qiu-yun, TAN Shi-yong, LAI Xin-chun. First-principles study of the elastic constants and optical properties of uranium metal [J]. Chin Phys B, 2012, 21(8): 1–8.Google Scholar
  7. [7]
    CHEN Qiang, HUANG Zhi-wei, ZHAO Zu-de. First principles study on elastic properties, thermodynamics and electronic structural of AB2 type phases in magnesium alloy [J]. Solid State Communications, 2013, 162(2): 1–7.Google Scholar
  8. [8]
    BOUHEMADOU A, KHENATA R. Prediction study of structural and elastic properties under the pressure effect of M2GaC (M=Ti,V,Nb,Ta) [J]. Journal of Applied Physics, 2007, 102(4): 043528.CrossRefGoogle Scholar
  9. [9]
    SEGALL M D, LINDAN PHILIP J D, PROBERT M J, PICKARD C J, HASNIP P J, CLARK S J, PAYNE M C. First-principles simulation: Ideas, illustrations and the CASTEP code [J]. Physical, 2002, 14: 2717–2744.Google Scholar
  10. [10]
    KOHN W, SHAM L. Self-consistent equations including exchaneg and correlation effect [J]. Physical Review, 1965, 140: 1133–1138.CrossRefGoogle Scholar
  11. [11]
    PACK J D, MONKHORST H J. Special points for Brillouin-zone integrations a reply [J]. Physical Review B, 1977, 16(12): 5188–5192.Google Scholar
  12. [12]
    PERDEWJ P, BURKE K, ERNZERH M. Erratum: Generalized gradient approximation made simple [J]. Physical Review Lett, 1996, 77(18): 3865–3868.CrossRefGoogle Scholar
  13. [13]
    NYLEN J. Structural relationships, phase stability and bonding of compounds PdSnn(n=2, 3, 4) [J]. Cheminform, 2004, 6(1): 147–155.Google Scholar
  14. [14]
    MONKHORS H J, PACK J D. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 13: 88–92.MathSciNetGoogle Scholar
  15. [15]
    HAMMER B, HANSEN L B, NORSKOV J K. Improved adsorption energetics within density-functional theory using revised Perdew- Burke-Ernzerhof functionals[J]. Physical Review B, 1999, 59: 7413–7421.CrossRefGoogle Scholar
  16. [16]
    FISCHER T H, ALMLOF J. General methods for geometry and wave function optimization [J]. Journal of Physical Chemistry, 1992, 96(24): 9768–9774.CrossRefGoogle Scholar
  17. [17]
    FAN Chang-zeng, ZENG Song-yan, LI Li-xin, LIU Ri-ping. Potential super-hard Osmium di-nitride with fluorite structure: First-principles calculations [J]. Physical Review B, 2006, 74(12): 125118–125123.CrossRefGoogle Scholar
  18. [18]
    BLANCO M A, FRANCISCO E, LUANA V. GIBBS: Isothermalisobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model [J]. Computer Physics Communications, 2004, 158(1): 57–72.CrossRefzbMATHGoogle Scholar
  19. [19]
    PUGHA S F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45: 823–843.CrossRefGoogle Scholar
  20. [20]
    MAYER B, ANTON H, BOTT E, METHFESSEL M, STICHT J. Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases [J]. Intermetallics, 2003, 11(1): 23–32.CrossRefGoogle Scholar
  21. [21]
    LU Jian-min, HU Qing-miao, YANG Rui. A comparative study of elastic constants of NiTi and NiAl alloys from first-principle calculations [J]. J Mater Sci Technol, 2009, 25(2): 215–218.Google Scholar
  22. [22]
    WANG Chen-ju, GU Jian-bing, KUANG Xiao-yu. Accurate calculations of the high-pressure elastic constants based on the firstprinciples [J]. Chin Phys B, 2015, 24(8): 1–6.Google Scholar
  23. [23]
    CIFTCI Y O, COLAKOGLU K, DELIGOZ E, BAYHAN U. First- Principles calculations on structure, elastic and thermodynamic properties of Al2X (X=Sc, Y) under pressure[J]. Mater Sci Technol, 2012, 28: 155–163.CrossRefGoogle Scholar
  24. [24]
    WANG Jing-yang, ZHOU Yan-chun. Dependence of elastic stiffness on electronic band structure of nanolaminate M2AlC (M=Ti,V,Nb, and Cr) ceramics [J]. Physical ReviewB, 2004, 69(21): 1681–1685.Google Scholar
  25. [25]
    HILL R. The elastic behavior of a crystalline aggregate [J]. Proceedings of the Physical Society, 1952, 65(5): 349–354.CrossRefGoogle Scholar
  26. [26]
    WU Zhi-jian, ZHAO Er-jun, XIANG, MENG Jian. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles [J]. Physical Review B, 2007, 76(5): 15–29.Google Scholar
  27. [27]
    BIRCH F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300/sup 0/K [J]. Geophys. Res (United States), 1978, 83:b3(B3): 1257–1268.CrossRefGoogle Scholar
  28. [28]
    TVERGAARD V, HUTCHINSON J W. Microcracking in ceramics induced by thermal expansion or elastic anisotropy [J]. American Ceramic Society, 1988, 71: 157–166.CrossRefGoogle Scholar
  29. [29]
    KARKI B B, STIXRUDE L, CLARK S J, WARREN M C, ACKLAND G J. Structure and elasticity of MgO at high pressure [J]. American Mineralogist, 1997, 82(B6): 51–60.CrossRefGoogle Scholar
  30. [30]
    MAYER B, ANTON H, BOTT E, METHFESSEL M, STICHT J. Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases [J]. Intermetallics, 2003, 11(1): 23–32.CrossRefGoogle Scholar
  31. [31]
    DELIGOZ E, CIFTCI Y O, JOCHYM P T, COLAKOGLU K. The first principles study on PtC compound materials [J]. Materials Chemistry Physics, 2008, 111(1): 29–33.CrossRefGoogle Scholar
  32. [32]
    SIN’KO G V, SMIRNOV N A. Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure [J]. Journal of Physics Condensed Matter, 2002, 14(29): 6989–7005.CrossRefGoogle Scholar
  33. [33]
    DEBYE P. The theory of specific heat [J]. Annalen der Physik, 1912, 39: 789–839. (in Germany)CrossRefGoogle Scholar
  34. [34]
    FENG Ju-lia, XIAO Bing, ZHOU Ray, PAN Will. Thermal expansions of Ln2Zr2O7 (Ln=La, Nd, Sm, and Gd) pyrochlore [J]. Journal of Applied Physics, 2012, 111(10): 1–4.CrossRefGoogle Scholar
  35. [35]
    BUJARD P, WALKER E. Elastic constants of Cr3Si solid State [J]. Solid State Communications, 1981, 39(5): 667–669.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Xiao-feng Niu (牛晓峰)
    • 1
    • 2
    Email author
  • Zhi-wei Huang (黄志伟)
    • 3
  • Lei Hu (胡磊)
    • 1
    • 2
  • Han Wang (王涵)
    • 1
    • 2
  • Bao-jian Wang (王宝健)
    • 1
    • 2
  1. 1.College of Materials Science and EngineeringTaiyuan University of TechnologyTaiyuanChina
  2. 2.Shanxi Key Laboratory of Advanced Magnesium-based MaterialsTaiyuanChina
  3. 3.Southwest Technique and Engineering InstituteChongqingChina

Personalised recommendations