Skip to main content
Log in

Elasticity under pressure and thermal property of Mg2La from first-principles calculations

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The elastic properties, thermodynamic and electronic structures of Mg2La were investigated by using first-principles. The calculated results show that pressure affects the elastic constants of C 11 more than that of C 12 and C 44. Specifically, higher pressure leads to greater bulk modulus (B), shear modulus (G), and elastic modulus (E). We predict B/G and anisotropy factor A based on the calculated elastic constants. The Debye temperature also increases with increasing pressure. Based on the quasi-harmonic Debye model, we examined the thermodynamic properties. These properties include the normalized volume (V/V 0), bulk modulus (B), heat capacity (C v), thermal expansion coefficient (α), and Debye temperature (Θ). Finally, the electronic structures associated with the density of states (DOS) and Mulliken population are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. POTZIES C, KAINERK U. Fatigue of magnesium alloys [J]. Advanced Engineering Materials, 2004, 6(6): 281–289.

    Article  Google Scholar 

  2. BLAWERT C, HORTN, KAINERK U. Automotive applications of magnesium and its alloys [J]. Transactions of the Indian Institute of Metals, 2004, 57(4): 397–408.

    Google Scholar 

  3. NIE J F. Preface to viewpoint set on: Phase transformations and deformation in magnesium alloys [J]. Scripta Materialia, 2003, 48: 981–984.

    Article  Google Scholar 

  4. MORDIKE B L, EBERT T. Magnesium: Properties–applications-potential [J]. Materials Science and Engineering A, 2001, 302: 37–45.

    Article  Google Scholar 

  5. WANG Yu-fei, ZHANG Wei-bing, WANG Zhi-zhong. Firstprinciples study of structural stabilities and electronic characteristics of Mg-La intermetallic compounds [J]. Computational Materials Science, 2007, 41(1): 78–85.

    Article  Google Scholar 

  6. CHEN Qiu-yun, TAN Shi-yong, LAI Xin-chun. First-principles study of the elastic constants and optical properties of uranium metal [J]. Chin Phys B, 2012, 21(8): 1–8.

    Google Scholar 

  7. CHEN Qiang, HUANG Zhi-wei, ZHAO Zu-de. First principles study on elastic properties, thermodynamics and electronic structural of AB2 type phases in magnesium alloy [J]. Solid State Communications, 2013, 162(2): 1–7.

    Google Scholar 

  8. BOUHEMADOU A, KHENATA R. Prediction study of structural and elastic properties under the pressure effect of M2GaC (M=Ti,V,Nb,Ta) [J]. Journal of Applied Physics, 2007, 102(4): 043528.

    Article  Google Scholar 

  9. SEGALL M D, LINDAN PHILIP J D, PROBERT M J, PICKARD C J, HASNIP P J, CLARK S J, PAYNE M C. First-principles simulation: Ideas, illustrations and the CASTEP code [J]. Physical, 2002, 14: 2717–2744.

    Google Scholar 

  10. KOHN W, SHAM L. Self-consistent equations including exchaneg and correlation effect [J]. Physical Review, 1965, 140: 1133–1138.

    Article  Google Scholar 

  11. PACK J D, MONKHORST H J. Special points for Brillouin-zone integrations a reply [J]. Physical Review B, 1977, 16(12): 5188–5192.

    Google Scholar 

  12. PERDEWJ P, BURKE K, ERNZERH M. Erratum: Generalized gradient approximation made simple [J]. Physical Review Lett, 1996, 77(18): 3865–3868.

    Article  Google Scholar 

  13. NYLEN J. Structural relationships, phase stability and bonding of compounds PdSnn(n=2, 3, 4) [J]. Cheminform, 2004, 6(1): 147–155.

    Google Scholar 

  14. MONKHORS H J, PACK J D. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 13: 88–92.

    MathSciNet  Google Scholar 

  15. HAMMER B, HANSEN L B, NORSKOV J K. Improved adsorption energetics within density-functional theory using revised Perdew- Burke-Ernzerhof functionals[J]. Physical Review B, 1999, 59: 7413–7421.

    Article  Google Scholar 

  16. FISCHER T H, ALMLOF J. General methods for geometry and wave function optimization [J]. Journal of Physical Chemistry, 1992, 96(24): 9768–9774.

    Article  Google Scholar 

  17. FAN Chang-zeng, ZENG Song-yan, LI Li-xin, LIU Ri-ping. Potential super-hard Osmium di-nitride with fluorite structure: First-principles calculations [J]. Physical Review B, 2006, 74(12): 125118–125123.

    Article  Google Scholar 

  18. BLANCO M A, FRANCISCO E, LUANA V. GIBBS: Isothermalisobaric thermodynamics of solids from energy curves using a quasi-harmonic Debye model [J]. Computer Physics Communications, 2004, 158(1): 57–72.

    Article  MATH  Google Scholar 

  19. PUGHA S F. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals [J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1954, 45: 823–843.

    Article  Google Scholar 

  20. MAYER B, ANTON H, BOTT E, METHFESSEL M, STICHT J. Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases [J]. Intermetallics, 2003, 11(1): 23–32.

    Article  Google Scholar 

  21. LU Jian-min, HU Qing-miao, YANG Rui. A comparative study of elastic constants of NiTi and NiAl alloys from first-principle calculations [J]. J Mater Sci Technol, 2009, 25(2): 215–218.

    Google Scholar 

  22. WANG Chen-ju, GU Jian-bing, KUANG Xiao-yu. Accurate calculations of the high-pressure elastic constants based on the firstprinciples [J]. Chin Phys B, 2015, 24(8): 1–6.

    Google Scholar 

  23. CIFTCI Y O, COLAKOGLU K, DELIGOZ E, BAYHAN U. First- Principles calculations on structure, elastic and thermodynamic properties of Al2X (X=Sc, Y) under pressure[J]. Mater Sci Technol, 2012, 28: 155–163.

    Article  Google Scholar 

  24. WANG Jing-yang, ZHOU Yan-chun. Dependence of elastic stiffness on electronic band structure of nanolaminate M2AlC (M=Ti,V,Nb, and Cr) ceramics [J]. Physical ReviewB, 2004, 69(21): 1681–1685.

    Google Scholar 

  25. HILL R. The elastic behavior of a crystalline aggregate [J]. Proceedings of the Physical Society, 1952, 65(5): 349–354.

    Article  Google Scholar 

  26. WU Zhi-jian, ZHAO Er-jun, XIANG, MENG Jian. Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles [J]. Physical Review B, 2007, 76(5): 15–29.

    Google Scholar 

  27. BIRCH F. Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300/sup 0/K [J]. Geophys. Res (United States), 1978, 83:b3(B3): 1257–1268.

    Article  Google Scholar 

  28. TVERGAARD V, HUTCHINSON J W. Microcracking in ceramics induced by thermal expansion or elastic anisotropy [J]. American Ceramic Society, 1988, 71: 157–166.

    Article  Google Scholar 

  29. KARKI B B, STIXRUDE L, CLARK S J, WARREN M C, ACKLAND G J. Structure and elasticity of MgO at high pressure [J]. American Mineralogist, 1997, 82(B6): 51–60.

    Article  Google Scholar 

  30. MAYER B, ANTON H, BOTT E, METHFESSEL M, STICHT J. Ab-initio calculation of the elastic constants and thermal expansion coefficients of Laves phases [J]. Intermetallics, 2003, 11(1): 23–32.

    Article  Google Scholar 

  31. DELIGOZ E, CIFTCI Y O, JOCHYM P T, COLAKOGLU K. The first principles study on PtC compound materials [J]. Materials Chemistry Physics, 2008, 111(1): 29–33.

    Article  Google Scholar 

  32. SIN’KO G V, SMIRNOV N A. Ab initio calculations of elastic constants and thermodynamic properties of bcc, fcc, and hcp Al crystals under pressure [J]. Journal of Physics Condensed Matter, 2002, 14(29): 6989–7005.

    Article  Google Scholar 

  33. DEBYE P. The theory of specific heat [J]. Annalen der Physik, 1912, 39: 789–839. (in Germany)

    Article  Google Scholar 

  34. FENG Ju-lia, XIAO Bing, ZHOU Ray, PAN Will. Thermal expansions of Ln2Zr2O7 (Ln=La, Nd, Sm, and Gd) pyrochlore [J]. Journal of Applied Physics, 2012, 111(10): 1–4.

    Article  Google Scholar 

  35. BUJARD P, WALKER E. Elastic constants of Cr3Si solid State [J]. Solid State Communications, 1981, 39(5): 667–669.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-feng Niu  (牛晓峰).

Additional information

Foundation item: Project(51574176) supported by the National Natural Science Foundation of China; Project(143020142-S) supported by the Program for the Top Young Academic Leaders of Higher Learning Institutions of Shanxi Province (TYAL), China; Project(201603D421028) supported by the Key Research and Development Program of Shanxi Province (International Cooperative Project), China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, Xf., Huang, Zw., Hu, L. et al. Elasticity under pressure and thermal property of Mg2La from first-principles calculations. J. Cent. South Univ. 24, 1713–1719 (2017). https://doi.org/10.1007/s11771-017-3578-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-017-3578-6

Key words

Navigation