Skip to main content
Log in

Preparation and characterization of highly photocatalytic active hierarchical BiOX (X=Cl, Br, I) microflowers for rhodamine B degradation with kinetic modelling studies

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The hierarchical BiOX (X=Cl, Br, I) microflowers were successfully synthesized via simple precipitation method at 160 °C for 24 h and characterized by XRD, SEM, TEM, UV-vis DRS and N2 adsorption-desorption techniques. The as-prepared samples were pure phases and of microflowers composed of nanosheets which intercrossed with each other. The specific surface areas were about 22.9, 17.3 and 16.2 m2/g for BiOCl, BiOBr and BiOI, respectively. The photocatalytic activities of BiOX powers were evaluated by RhB degradation under UV-vis light irradiation in the order of BiOCl > BiOBr > BiOI. Also, the kinetics of RhB degradation over BiOI was selectively investigated, demonstrating that the kinetics of RhB degradation follows apparent first-order kinetics and fits the Langmuir-Hinshelwood model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KUBACKA A, FERNÁNDEZ-GARCÍA M, COLÓN G. Advanced nanoarchitectures for solar photocatalytic applications [J]. Chemical Reviews, 2012, 112(3): 1555–1614.

    Article  Google Scholar 

  2. ASAHI R, MORIKAWA T, IRIE H, OHWAKI T. Nitrogen-doped titanium dioxide as visible-light-sensitive photocatalyst: Designs, developments, and prospects [J]. Chemical Reviews, 2014, 114(19): 9824–9852.

    Article  Google Scholar 

  3. OSTERLOH F E. Inorganic nanostructures for photoelectrochemical and photocatalytic water splitting [J]. Chemical Society Reviews, 2013, 44(23): 2294–2320.

    Article  Google Scholar 

  4. KUDO A, MISEKI Y. Heterogeneous photocatalyst materials for water splitting [J]. Chemical Society Reviews, 2009, 38(38): 253–278.

    Article  Google Scholar 

  5. ASAHI R, MORIKAWA T, OHWAKI T, AOKI K, TAGA Y. Visible-light photocatalysis in nitrogen-doped titanium oxides [J]. Science, 2001, 293(5528): 269–271.

    Article  Google Scholar 

  6. ROY S C, VARGHESE O K, PAULOSE M, GRIMES C A. Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons [J]. ACS Nano, 2010, 4(3): 1259–1278.

    Article  Google Scholar 

  7. TONG Hua, OUYANG Shu-xin, BI Ying-pu, UMEZAWA N, OSHIKIRI M, YE Jin-hua. Nano-hotocatalytic materials: Possibilities and challenges [J]. Advanced Materials, 2012, 24(2): 229–251.

    Article  Google Scholar 

  8. CHENG Ning-yan, TIAN Jing-qi, LIU Qian, GE Chen-jiao, QUSTI A H, ASIRI A M, AL-YOUBI A O, SUN Xu-ping. Au-nanoparticleloaded graphitic carbon nitride nanosheets: Green photocatalytic synthesis and application toward the degradation of organic pollutants [J]. ACS Appl Mater Interfaces, 2013, 5(15): 6815–6819.

    Article  Google Scholar 

  9. XIANG Quan-jun, YU Jia-guo, JARONIEC M. Graphene-based semiconductor photocatalysts [J]. Chemical Society Reviews, 2012, 41(2): 782–796.

    Article  Google Scholar 

  10. FUJISHIMA A, HONDA K. Photolysis-decomposition of water at the surface of an irradiated semiconductor [J]. Nature, 1972, 238(5358): 37–38.

    Article  Google Scholar 

  11. KHAN S U M, MOFAREH A S, INGLER W B. Efficient photochemical water splitting by a chemically modified n-TiO2 [J]. Science, 2002, 297(2): 2243–2245.

    Article  Google Scholar 

  12. KUMAR S G, DEVI L G. Review on modified TiO2 photocatalysis under UV/visible light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics [J]. The Journal of Physical Chemistry A, 2011, 115(46): 13211–13241.

    Article  Google Scholar 

  13. LINSEBIGLER A L, LU Guang-quan, YATES Jr J T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results [J]. Chemical Reviews, 1995, 95(3): 735–758.

    Article  Google Scholar 

  14. CHEN C C, LU C S, CHUNG Y C, JAN J L. UV light induced photodegradation of malachite green on TiO2 nanoparticles [J]. Journal of Hazardous Materials, 2007, 141(3): 520–528.

    Article  Google Scholar 

  15. PAN Lun, ZOU Ji-jun, ZHANG Xiang-wen, WANG Li. Water-mediated promotion of dye sensitization of TiO2 under visible light [J]. Journal of the American Chemical Society, 2011, 133(26): 10000–10002.

    Article  Google Scholar 

  16. ZHANG Ke-lei, LIU Cun-ming, HUANG Fu-qiang, ZHENG Chong, WANG Wen-deng. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst [J]. Applied Catalysis B: Environmental, 2006, 68(3, 4): 125–129.

    Article  Google Scholar 

  17. LIN Xin-ping, HUANG Tao, HUANG Fu-qiang, WANG Wen-deng, SHI Jian-lin. Photocatalytic activity of a Bi-based oxychloride Bi4NbO8Cl [J]. Journal Materials Chemistry, 2007, 17(20): 2145–2150.

    Article  Google Scholar 

  18. YE Li-qun, SU Yu-rong, JIN Xiao-li, XIE Hai-quan, ZHANG Can. Recent advances in BiOX (X=Cl, Br and I) photocatalysts: Synthesis, modification, facet effects and mechanisms [J]. Environmental Science: Nano, 2014, 1: 90–112.

    Google Scholar 

  19. CHENG He-feng, HUANG Bai-biao, DAI Ying. Engineering BiOX (X=Cl, Br, I) nanostructures for highly efficient photocatalytic applications [J]. Nanoscale, 2014, 6(4): 2009–2026.

    Article  Google Scholar 

  20. XIA Jie-xiang, YIN Sheng, LI Hua-ming, XU Hui, XU Li, XU Yuan-guo. Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid [J]. Dalton Transactions, 2011, 40(19): 5249–5258.

    Article  Google Scholar 

  21. XIONG Jin-yan, CHENG Gang, LI Guang-fang, QIN Fan, CHEN Rong. Well-crystallized square-like 2D BiOCl nanoplates: Mannitolassisted hydrothermal synthesis and improved visible-light-driven photocatalytic performance [J]. RSC Advances, 2011, 1(8): 1542–1553.

    Article  Google Scholar 

  22. ZHANG Xi, AI Zhi-hui, JIA Fa-long, ZHANG Li-zhi. Generalized one-pot synthesis, characterization, and photocatalytic activity of hierarchical BiOX (X=Cl, Br, I) nanoplate microspheres [J]. The Journal of Physical Chemistry C, 2008, 112(3): 747–753.

    Article  Google Scholar 

  23. LIU Yuan-yuan, SON W J, LU Ji-bao, HUANG Bai-biao, DAI Ying, WHANGBO M H. Composition dependence of the photocatalytic activities of BiOCl1-x Brx solid solutions under visible light [J]. Journal of Chemistry A European, 2011, 17(34): 9342–9349.

    Article  Google Scholar 

  24. HUANG Wen-lai, ZHU Qing-shan. DFT calculations on the electronic structures of BiOX (X=F, Cl, Br, I) photocatalysts with and without semicore Bi 5d states [J]. Journal of computational chemistry, 2009, 30(2): 183–190.

    Article  Google Scholar 

  25. BURDA C, CHEN Xiao-bo, NARAYANAN R, EL-SAYED M A. Chemistry and properties of nanocrystals of different shapes [J]. Chemical Reviews, 2005, 105(4): 1025–1102.

    Article  Google Scholar 

  26. ZHANG Kun, LIANG Jie, WANG Shan, LIU Jie, REN Kuai-xia, ZHENG Xiao, LUO Hui, PENG Ying-jie, ZOU Xing, BO Xu. BiOCl sub-microcrystals induced by citric acid and their high photocatalytic activities [J]. Crystal Growth Design, 2012, 12(2): 793–803.

    Article  Google Scholar 

  27. CUI Yi, LIEBER C M. Functional nanoscale electronic devices assembled using silicon nanowire building blocks [J]. Science, 2001, 291(5505): 851–853.

    Article  Google Scholar 

  28. WANG Xun, ZHUANG Jing, PENG Qing, LI Ya-dong. A general strategy for nanocrystal synthesis [J]. Nature, 2005, 437(7055): 121–124.

    Article  Google Scholar 

  29. WANG Chang-hua, SHAO Chang-lu, LIU Yi-chun, ZHANG Li-na. Photocatalytic properties BiOCl and Bi2O3 nanofibers prepared by electrospinning [J]. Scripta Materialia, 2008, 59(3): 332–335.

    Article  Google Scholar 

  30. YE Li-qun, ZAN Ling, TIAN Li-hong, PENG Tian-you, ZHANG Jiu-jun. The {001} facets-dependent high photoactivity of BiOCl nanosheets [J]. Chem Commun, 2011, 47(24): 6951–6953.

    Article  Google Scholar 

  31. HENLE J, SIMON P, FRENZEL A, SCHOLZ S, KASKEL S. Nanosized BiOX (X=Cl, Br, I) particles synthesized in reverse microemulsions [J]. Chemistry of Materials, 2007, 19(3): 366–373.

    Article  Google Scholar 

  32. DENG Hong, WANG Jun-wei, PENG Qing, WANG Xun, LI Ya-dong. Controlled hydrothermal synthesis of bismuth oxyhalide nanobelts and nanotubes [J]. Chemistry–A European Journal, 2005, 11(22): 6519–6524.

    Article  Google Scholar 

  33. SONG Ji-ming, MAO Chang-jie, NIU He-lin, SHEN Yu-hua, ZHANG Sheng-yi. Hierarchical structured bismuth oxychlorides: Self-assembly from nanoplates to nanoflowers via a solvothermal route and their photocatalytic properties [J]. CrystEngComm, 2010, 12(11): 3875–3881.

    Article  Google Scholar 

  34. DENG Zheng-tao, CHEN Dong, PENG Bo, TANG Fang-qiong. From bulk metal Bi to two-dimensional well-crystallized BiOX (X= Cl, Br) micro-and nanostructures: synthesis and characterization [J]. Crystal Growth and Design, 2008, 8(8): 2995–3003.

    Article  Google Scholar 

  35. SU Jun-lin, XIAO Yang, REN Mao. Direct hydrolysis synthesis of BiOI flowerlike hierarchical structures and its photocatalytic activity under simulated sunlight irradiation [J]. Catalysis Communications, 2014, 45: 30–33.

    Article  Google Scholar 

  36. XUE Chao, XIA Jia-le, WANG Ting, ZHAO Shi-shun, YANG Gui-dong, YANG Bo-lun, DAI Yan-zhu, YANG Guang. A facile and efficient solvothermal fabrication of three-dimensionally hierarchical BiOBr microspheres with exceptional photocatalytic activity [J]. Materials Letters, 2014, 133: 274–277.

    Article  Google Scholar 

  37. PENG Sheng-jie, LI Lin-lin, ZHU Pei-ning, WU Yong-zhi, SRINIVASAN M, MHAISALKAR S G, RAMAKRISHNA S, YAN Qing-yu. Controlled synthesis of BiOCl hierarchical self-assemblies with highly efficient photocatalytic properties [J]. Chemistry–An Asian Journal, 2013, 8(1): 258–268.

    Article  Google Scholar 

  38. ZHANG Lei, CAO Xiao-feng, CHEN Xue-tai, XUE Zi-ling. BiOBr hierarchical microspheres: Microwave-assisted solvothermal synthesis, strong adsorption and excellent photocatalytic properties [J]. Journal of Colloid and Interface Science, 2011, 354(11): 630–636.

    Article  Google Scholar 

  39. AI Zhi-hui, HO W, LEE S, ZHANG Li-zhi. Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light [J]. Environmental Science Technology, 2009, 43(11): 4143–4150.

    Article  Google Scholar 

  40. ZHU Lu-ping, LIAO Gui-hong, BING Nai-ci, WANG Ling-ling, YANG Yang, XIE Hong-yong. Self-assembled 3D BiOCl hierarchitectures: Tunable synthesis and characterization [J]. CrystEngComm, 2010, 12(11): 3791–3796.

    Article  Google Scholar 

  41. HU Jun, WENG Sun-xian, ZHENG Zu-yang, PEI Zeng-xia, HUANG Mian-li, LIU Ping. Solvents mediated-synthesis of BiOI photocatalysts with tunable morphologies and their visible-light driven photocatalytic performances in removing of arsenic from water [J]. Journal of Hazardous Materials, 2014, 264(2): 293–302.

    Article  Google Scholar 

  42. LI Guang-fang, QIN Fan, WANG Run-ming, XIAO Sheng-qiang, SUN Hong-zhe, CHEN Rong. BiOX (X=Cl, Br, I) nanostructures: Mannitol-mediated microwave synthesis, visible light photocatalytic performance, and Cr(VI) removal capacity [J]. Journal of Colloid and Interface Science, 2013, 409(11): 43–51.

    Article  Google Scholar 

  43. CHEN Lang, HUANG Rui, XIONG Miao, YUAN Qing, HE Jie, JIA Jing, YAO Meng-yuan, LUO Sheng-lian, AU Chak-tong, YIN Shuang-feng. Room-temperature synthesis of flower-like BiOX (X=Cl, Br, I) hierarchical structures and their visible-light photocatalytic activity [J]. Inorganic Chemistry, 2013, 52(19): 11118–11125.

    Article  Google Scholar 

  44. NGUYEN T, OLLIS D F. Complete heterogeneously photocatalyzed transformation of 1, 1-and 1, 2-Dibromoethane to CO2 and HBr [J]. The Journal of Physical Chemistry, 1984, 88(16): 3386–3388.

    Article  Google Scholar 

  45. SUBRAMANIAN V, KAMAT P V, WOLF E E. Mass-transfer and kinetic studies during the photocatalytic degradation of an azo dye on optically transparent electrode thin film [J]. Industrial & Engineering Chemistry Research, 2003, 42(10): 2131–2138.

    Article  Google Scholar 

  46. OLLIS D F. Kinetics of liquid phase photocatalyzed reactions: An illuminating approach [J]. The Journal of Physical Chemistry B, 2005, 109(109): 2439–2444.

    Article  Google Scholar 

  47. DASH A, SARKAR S, ADUSUMALLI V, MAHALINGAM V. Microwave synthesis, photoluminescence, and photocatalytic activity of PVA-Functionalized Eu3+-doped BiOX (X=Cl, Br, I) nanoflakes [J]. Langmuir: the ACS Journal of Surfaces and Colloids, 2014, 30(5): 1401–1409.

    Article  Google Scholar 

  48. CHEN Feng, LIU Hong-qi, BAGWASI S, SHEN Xing-xing, ZHANG Jin-long. Photocatalytic study of BiOCl for degradation of organic pollutants under UV irradiation [J]. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 215(1): 76–80.

    Article  Google Scholar 

  49. KUBELKA P. Ein beitrag zur optik der farban striche [J]. Z Tech Phys, 1931, 12: 593–603.

    Google Scholar 

  50. LIU Jing-yi, LI Hai-ping, DU Na, SONG Shue, HOU Wan-guo. Synthesis, characterization, and visible-light photocatalytic activity of BiOI hierarchical flowerlike microspheres [J]. RSC Advances, 2014, 4(59): 31393–31399.

    Article  Google Scholar 

  51. XU Jian, MENG Wei, ZHANG Yuan, LI Lei, GUO Chang-sheng. Photocatalytic degradation of tetrabromobisphenol A by mesoporous BiOBr: Efficacy, products and pathway [J]. Applied Catalysis B: Environmental, 2011, 107(3): 355–362.

    Article  Google Scholar 

  52. XIAO Xin, ZHANG Wei-de. Facile synthesis of nanostructured BiOI microspheres with high visible light-induced photocatalytic activity [J]. Journal of Materials Chemistry, 2010, 20(28): 5866–5870.

    Article  Google Scholar 

  53. BUTLER M. Photoelectrolysis and physical properties of the semiconducting electrode WO2 [J]. Journal of Applied Physics, 1977, 48(5): 1914–1920.

    Article  Google Scholar 

  54. LUO Yuan-yuan, DUAN Guo-tao, LI Guang-hai. Synthesis and characterization of flower-like β-Ni(OH)2 nanoarchitectures [J]. Journal of Solid State Chemistry, 2007, 180(7): 2149–2153.

    Article  Google Scholar 

  55. SING K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) [J]. Pure & Applied Chemistry, 2009, 57(11): 603–619.

    Google Scholar 

  56. KRUK M, JARONIEC M. Gas adsorption characterization of ordered organic-inorganic nanocomposite materials [J]. Chemistry of Materials, 2001, 13(10): 3169–3183.

    Article  Google Scholar 

  57. ZHANG Jun, SHI Feng-jun, LIN Jing, CHEN Dong-feng, GAO Jian-ming, HUANG Zhi-xin, DING Xiao-xia, TANG Cheng-cun. Self-Assembled 3-D architectures of BiOBr as a visible light-driven photocatalyst [J]. Chemistry of Materials, 2008, 20(9): 2937–2941.

    Article  Google Scholar 

  58. LI Yuan-yuan, LIU Jin-ping, HUANG Xin-tang, LI Guang-yun. Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres [J]. Crystal growth & design, 2007, 7(7): 1350–1355.

    Article  Google Scholar 

  59. LI Xiang-cun, ZHENG Wen-ji, HE Gao-hong, ZHAO Rui, LIU Dan. Morphology control of TiO2 nanoparticle in microemulsion and its photocatalytic property [J]. ACS Sustainable Chemistry & Engineering, 2014, 2(2): 288–295.

    Article  Google Scholar 

  60. ZHUANG Jian-dong, DAI Wen-xin, TIAN Qin-fen, LI Zhao-hui, XIE Li-yan, WANG Ji-xin, LIU Ping. Photocatalytic degradation of RhB over TiO2 bilayer films: Effect of defects and their location [J]. Langmuir, 2010, 26(12): 9686–9694.

    Article  Google Scholar 

  61. XUE Chao, WANG Ting, YANG Gui-dong, YANG Bo-lun, DING Shu-jiang. A facile strategy for the synthesis of hierarchical TiO2/CdS hollow sphere heterostructures with excellent visible light activity [J]. Journal of Materials Chemistry A, 2014, 2(21): 7674–7679.

    Article  Google Scholar 

  62. TANG Jun-wang, ZOU Zhi-gang, YE Jin-hua. Effects of substituting Sr2+ and Ba2+ for Ca2+ on the structural properties and photocatalytic behaviors of CaIn2O4 [J]. Chemistry of Materials, 2004, 16(9): 1644–1649.

    Article  Google Scholar 

  63. LI Yong-yu, WANG Jian-she, YAO Hong-chang, DANG Li-yun, LI Zhong-jun. Efficient decomposition of organic compounds and reaction mechanism with BiOI photocatalyst under visible light irradiation [J]. Journal of Molecular Catalysis A: Chemical, 2011, 334(1): 116–122.

    Article  Google Scholar 

  64. WANG Xiao-meng, YANG Shao-gui, LI Hui, ZHAO Wei, SUN Cheng, HE Huan. High adsorption and efficient visible-lightphotodegradation for cationic Rhodamine B with microspheric BiOI photocatalyst [J]. RSC Advances, 2014, 4(80): 42530–42537.

    Article  Google Scholar 

  65. XU Cheng-qun, WU Hong-hai, GU Feng-long. Efficient adsorption and photocatalytic degradation of Rhodamine Bunder visible light irradiation over BiOBr/montmorillonite composites [J]. Journal of Hazardous Materials, 2014, 275C(2): 185–192.

    Article  Google Scholar 

  66. LI Tian-bao, CHEN Gang, ZHOU Chao, SHEN Zao-yu, JIN Ren-cheng, SUN Jing-xue. New photocatalyst BiOCl/BiOI composites with highly enhanced visible light photocatalytic performances [J]. Dalton Transactions, 2011, 40(25): 6751–6758.

    Article  Google Scholar 

  67. JIANG Jing, ZHAO Kun, XIAO Xiao-yi, ZHANG Li-zhi. Synthesis and facet-dependent photoreactivity of BiOCl single-crystalline nanosheets [J]. Journal of American Chemistry Society, 2012, 134(10): 4473–4476.

    Article  Google Scholar 

  68. SOLTANI T, ENTEZARI M H. Sono-synthesis of bismuth ferrite nanoparticles with high photocatalytic activity in degradation of Rhodamine B under solar light irradiation [J]. Chemical Engineering Journal, 2013, 223(5): 145–154.

    Article  Google Scholar 

  69. NATARAJAN T S, NATARAJAN K, BAJAJ H C, TAYADE R J. Energy efficient UV-LED source and TiO2 nanotube array-based reactor for photocatalytic application [J]. Industrial & Engineering Chemistry Research, 2011, 50(13): 7753–7762.

    Article  Google Scholar 

  70. SONG Li-min, ZHANG Shu-jian, WEI Qing-wu. Porous BiOI Sonocatalysts: Hydrothermal synthesis, characterization, sonocatalytic, and kinetic properties [J]. Industrial & Engineering Chemistry Research, 2012, 51(3): 1193–1197.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Yan  (颜军).

Additional information

Foundation item: Project(21301194) supported by the National Natural Science Foundation of China; Project(20130162120031) supported by Research Fund for the Doctoral Program of Higher Education of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Yy., Zhao, L., Yang, My. et al. Preparation and characterization of highly photocatalytic active hierarchical BiOX (X=Cl, Br, I) microflowers for rhodamine B degradation with kinetic modelling studies. J. Cent. South Univ. 24, 754–765 (2017). https://doi.org/10.1007/s11771-017-3477-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-017-3477-x

Key words

Navigation