Skip to main content
Log in

Identification and nonlinear model predictive control of MIMO Hammerstein system with constraints

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

This work is concerned with identification and nonlinear predictive control method for MIMO Hammerstein systems with constraints. Firstly, an identification method based on steady-state responses and sub-model method is introduced to MIMO Hammerstein system. A modified version of artificial bee colony algorithm is proposed to improve the prediction ability of Hammerstein model. Next, a computationally efficient nonlinear model predictive control algorithm (MGPC) is developed to deal with constrained problem of MIMO system. The identification process and performance of MGPC are shown. Numerical results about a polymerization reactor validate the effectiveness of the proposed method and the comparisons show that MGPC has a better performance than QDMC and basic GPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BAYRAK A, TATLICIOGLU E. Online time delay identification and control for general classes of nonlinear systems [J]. Transactions of the Institute of Measurement and Control, 2013, 35(6): 808–823.

    Article  Google Scholar 

  2. GARNA T, BOUZRARA K, RAGOT J, MESSAOUD H. Nonlinear system modeling based on bilinear Laguerre orthonormal bases [J]. ISA Transactions, 2013, 52(3): 301–317.

    Article  MATH  Google Scholar 

  3. PEARSON R K, POTTMANN M. Gray-box identification of block-oriented nonlinear models [J]. Journal of Process Control, 2000, 10(4): 301–315.

    Article  Google Scholar 

  4. MEHTA U, MAJHI S. Identification of a class of Wiener and Hammerstein-type nonlinear processes with monotonic static gains [J]. ISA Transactions, 2010, 49(4): 501–509.

    Article  Google Scholar 

  5. WANG F, XING K, XU X. Parameter estimation of piecewise Hammerstein systems [J]. Transactions of the Institute of Measurement and Control, 2014: 0142331214531007.

    Google Scholar 

  6. DEMPSEY E J, WESTWICK D T. Identification of Hammerstein models with cubic spline nonlinearities [J]. IEEE Transactions on Biomedical Engineering, 2004, 51(2): 237–245.

    Article  Google Scholar 

  7. SUNG S W. System identification method for Hammerstein processes [J]. Industrial & Engineering Chemistry Research, 2002, 41(17): 4295–4302.

    Article  Google Scholar 

  8. ALONGE F, D' IPPOLITO F, RAIMONDI F M, et al. Identification of nonlinear systems described by Hammerstein models [C]// Decision and Control, 2004. Proceedings. 43rd IEEE Conference on. New York: IEEE, 2004, 4: 3990–3995.

    Google Scholar 

  9. TANG Y, QIAO L, GUAN X. Identification of Wiener model using step signals and particle swarm optimization [J]. Expert Systems with Applications, 2010, 37(4): 3398–3404.

    Article  Google Scholar 

  10. TANG K S, MAN K F, KWONG S, HE Q. Genetic algorithms and their applications [J]. Signal Processing Magazine, IEEE, 1996, 13(6): 22–37.

    Article  Google Scholar 

  11. KENNEDY J. Particle swarm optimization [M]// Encyclopedia of Machine Learning. New York, US: Springer, 2010: 760–766.

    Google Scholar 

  12. KARABOGA D. An idea based on honey bee swarm for numerical optimization [R]. Technical report-tr06, Erciyes University, Engineering faculty, Computer engineering department, 2005.

    Google Scholar 

  13. KARABOGA D, AKAY B. A comparative study of artificial bee colony algorithm [J]. Applied Mathematics and Computation, 2009, 214(1): 108–132.

    Article  MathSciNet  MATH  Google Scholar 

  14. GAO W, LIU S. A modified artificial bee colony algorithm[J]. Computers & Operations Research, 2012, 39(3): 687–697.

    Article  MATH  Google Scholar 

  15. PAN L D. The application of optimization for regulator selftuning online [J]. Journal of Beijing University of Chemical Technology, 1984, 11(1): 17–18. (in Chinese)

    Google Scholar 

  16. CHEN W H, HU X B. A stable model predictive control algorithm without terminal weighting [J]. Transactions of the Institute of Measurement and Control, 2005, 27(2): 119–135.

    Article  Google Scholar 

  17. CLARKE D W. Application of generalized predictive control to industrial processes [J]. Control Systems Magazine, IEEE, 1988, 8(2): 49–55.

    Article  Google Scholar 

  18. OUARI K, REKIOUA T, OUHROUCHE M. Real time simulation of nonlinear generalized predictive control for wind energy conversion system with nonlinear observer [J]. ISA Transactions, 2014, 53(1): 76–84.

    Article  Google Scholar 

  19. JIANG J, LI X, DENG Z, YANG J, ZHANG Y, LI J. Thermal management of an independent steam reformer for a solid oxide fuel cell with constrained generalized predictive control [J]. International Journal of Hydrogen Energy, 2012, 37(17): 12317–12331.

    Article  Google Scholar 

  20. ZHANG J, ZHOU Y, LI Y, HOU G, FANG F. Generalized predictive control applied in waste heat recovery power plants [J]. Applied Energy, 2013, 102: 320–326.

    Article  Google Scholar 

  21. CAMACHO E F, ALBA C B. Model predictive control [M]. New York: Springer Science & Business Media, 2013.

    Google Scholar 

  22. ZHANG L, WANG J, GE Y, WANG B. Constrained distributed model predictive control for state-delayed systems with polytopic uncertainty description [J]. Transactions of the Institute of Measurement and Control, 2014: 0142331214528970.

    Google Scholar 

  23. ONNEN C, BABUŠKA R, KAYMAK U, SOUSA J M, VERBRUGGEN H B, ISEMANN R. Genetic algorithms for optimization in predictive control [J]. Control Engineering Practice, 1997, 5(10): 1363–1372.

    Article  Google Scholar 

  24. LI Y, SHEN J, LU J. Constrained model predictive control of a solid oxide fuel cell based on genetic optimization [J]. Journal of Power Sources, 2011, 196(14): 5873–5880.

    Article  Google Scholar 

  25. AŽMAN K, KOCIJAN J. Non-linear model predictive control for models with local information and uncertainties [J]. Transactions of the Institute of Measurement and Control, 2008, 30(5): 371–396.

    Article  MATH  Google Scholar 

  26. ZHAO W X, ZHOU T. Weighted least squares based recursive parametric identification for the submodels of a PWARX system [J]. Automatica, 2012, 48(6): 1190–1196.

    Article  MathSciNet  MATH  Google Scholar 

  27. SOROUSH M, KRAVARIS C. Multivariable nonlinear control of a continuous polymerization reactor [C]// Proceedings of the 1992 merican Control Conference, Chicago, US: IEEE, 1992: 607–614.

    Google Scholar 

  28. DOYLE F J, OGUNNAIKE B A, PEARSON R K. Nonlinear model-based control using second-order Volterra models [J]. Automatica, 1995, 31(5): 697–714.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-zi Li  (李大字).

Additional information

Foundation item: Projects(61573052, 61273132) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Dz., Jia, Yx., Li, Qs. et al. Identification and nonlinear model predictive control of MIMO Hammerstein system with constraints. J. Cent. South Univ. 24, 448–458 (2017). https://doi.org/10.1007/s11771-017-3447-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-017-3447-3

Key words

Navigation