Skip to main content
Log in

Hot deformation behavior and constitutive modeling of Q345E alloy steel under hot compression

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Q345E as one of typical low alloy steels is widely used in manufacturing basic components in many fields because of its eminent formability under elevated temperature. In this work, the deformation behavior of Q345E steel was investigated by hot compression experiments on Gleeble-3500 thermo-mechanical simulator with the temperature ranging from 850 °C to 1150 °C and strain rate ranging from 0.01 s-1 to 10 s-1. The experimental results indicate that dynamic softening of Q345E benefits from increasing deformation temperature and decreasing strain rate. The mathematical relationship between dynamic softening degree and deformation conditions is established to predict the dynamic softening degree quantitatively, which is further proved by some optical microstructures of Q345E. In addition, the experimental results also reveal that the stress level decreases with increasing deformation temperature and decreasing strain rate. The constitutive equation for flow stress of Q345E is formulated by Arrihenius equation and the modified Zener-Hollomon parameter considering the compensation of both strain and strain rate. The flow stress values predicted by the constitutive equation agree well with the experimental values, realizing the accurate prediction of the flow stress of Q345E steel under hot deformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHANG Wen-juan, HAO Peng-fei, LIU Yong, SHU Xue-feng. Determination of the dynamic response of Q345 steel materials by using SHPB [J]. Procedia Engineering, 2011, 24: 773–777.

    Article  Google Scholar 

  2. YU Wen-jian, ZHAO Jin-cheng, SHI Jian-yong. Dynamic mechanical behaviour of Q345 steel at elevated temperatures: Experimental study [J]. Materials at High Temperatures, 2011, 27: 285–293.

    Article  Google Scholar 

  3. LIN Yong-cheng, CHEN Ming-song, ZHONG Jue. Study of static recrystallization kinetics in a low alloy steel [J]. Computational Materials Science, 2008, 44: 316–321.

    Article  Google Scholar 

  4. LI Wei, LI Hai, WANG Zhi-xiu, ZHENG Zi-qiao. Constitutive equations for high temperature flow stress prediction of Al–14Cu–7Ce alloy [J]. Materials Science and Engineering A, 2011, 528: 4098–4103.

    Article  Google Scholar 

  5. LIANG Hou-quan, GUO Hong-zhen, NAN Yang, QIN Chun, PENG Xiao-na, ZHANG Jing-li. The construction of constitutive model and identification of dynamic softening mechanism of high-temperature deformation of Ti–5Al–5Mo–5V–1Cr–1Fe alloy [J]. Materials Science and Engineering A, 2014, 615: 42–50.

    Article  Google Scholar 

  6. YIN Fei, HUA Lin, MAO Hua-jie, HAN Xing-hui. Constitutive modeling for flow behavior of GCr15 steel under hot compression experiments [J]. Materials & Design, 2013, 43: 393–401.

    Article  Google Scholar 

  7. FENG D, ZHANG X M, LIU S D, DENG Y L. Constitutive equation and hot deformation behavior of homogenized Al–7.68Zn–2.12Mg–1.98Cu–0.12Zr alloy during compression at elevated temperature [J]. Materials Science and Engineering A, 2014, 608: 63–72.

    Article  Google Scholar 

  8. BHATTACHARYA R, LAN Y J, WYNNEA B P, DAVISD B, RAINFORTH W M. Constitutive equations of flow stress of magnesium AZ31 under dynamically recrystallizing conditions [J]. Journal of Materials Processing Technology, 2014, 214: 1408–1417.

    Article  Google Scholar 

  9. CHENG Liang, XUE Xiang-yi, TANG Bin, KOU Hong-chao, LI Jin-shan. Flow characteristics and constitutive modeling for elevated temperature deformation of a high Nb containing TiAl alloy [J]. Intermetallics, 2014; 49: 23–28.

    Article  Google Scholar 

  10. GUPTA A K, ANIRUDH V K, SINGH S K. Constitutive models to predict flow stress in austenitic stainless steel 316 at elevated temperatures [J]. Materials & Design, 2013, 43: 410–418.

    Article  Google Scholar 

  11. LI Hong-ying, LI Yang-hua, WANG Xiao-feng, LIU Jiao-jiao, WU Yue. A comparative study on modified johnson cook, modified zerilli–armstrong and arrhenius-type constitutive models to predict the hot deformation behavior in 28CrMnMoV steel [J]. Materials & Design, 2013, 49: 493–501.

    Article  Google Scholar 

  12. WANG Meng-han, LI Yu-feng, WANG Wen-hao, ZHOU Jie, CHIBA A. Quantitative analysis of work hardening and dynamic softening behavior of low carbon alloy steel based on the flow stress [J]. Materials & Design, 2013, 45: 384–392.

    Article  Google Scholar 

  13. QUAN Guo-zhen, MAO An, LUO Gui-chang, LIANG Jianting, WU Dong-sen, ZHOU Jie. Constitutive modeling for the dynamic recrystallization kinetics of as-extruded 3Cr20Ni10W2 heat-resistant alloy based on stress–strain data [J]. Materials & Design, 2013, 52: 98–107.

    Article  Google Scholar 

  14. LIU Y G, LI M Q, LUO J. The modelling of dynamic recrystallization in the isothermal compression of 300M steel [J]. Materials Science and Engineering A, 2013, 574: 1–8

    Article  Google Scholar 

  15. XU Yan, HU Lian-xi, SUN Yu. Deformation behaviour and dynamic recrystallization of AZ61 magnesium alloy [J]. Journal of Alloys and Compounds, 2013, 580: 262–269.

    Article  Google Scholar 

  16. XIAO Yan-hong, GUO Cheng, GUO Xiao-yan. Constitutive modeling of hot deformation bahavior of H62 brass [J]. Materials Science and Engineering A, 2011, 528: 6510–6518.

    Article  Google Scholar 

  17. HAGHDADI N, ZAREI-HANZAKI A, ABEDI H R. The flow behavior modeling of cast A356 aluminum alloy at elevated temperatures considering the effect of strain [J]. Materials Science and Engineering A, 2012, 535: 252–257.

    Article  Google Scholar 

  18. WU Horng-yu, YANG Jie-chen, ZHU Feng-jun, WU Chen-tao. Hot compressive flow stress modeling of homogenized AZ61 Mg alloy using strain-dependent constitutive equations [J]. Materials Science and Engineering A, 2013, 574: 17–24.

    Article  Google Scholar 

  19. WU B, LI M Q, MA D W. The flow behavior and constitutive equations in isothermal compression of 7050 aluminum alloy [J]. Materials Science and Engineering A, 2012, 542: 79–87.

    Article  Google Scholar 

  20. NING Yong-quan, YAO Ze-kun, LIANG Xin-min, LIU Yan-hui. Flow behavior and constitutive model for Ni–20.0Cr–2.5Ti–1.5Nb–1.0Al superalloy compressed below λ'-transus temperature [J]. Materials Science and Engineering A, 2012, 551: 7–12.

    Article  Google Scholar 

  21. LIAO Ching-hao, WU Horng-yu, LEE S, ZHU Feng-jue, LIU Hsu-cheng, WU Cheng-tao. Strain-dependent constitutive analysis of extruded AZ61 Mg alloy under hot compression [J]. Materials Science and Engineering A, 2013, 565: 1–8.

    Article  Google Scholar 

  22. REZAEI ASHTIANI H R, PARSA M H, BISADI H. Constitutive equations for elevated temperature flow behavior of commercial purity aluminum [J]. Materials Science and Engineering A, 2012, 545: 61–67.

    Article  Google Scholar 

  23. XIAO Yan-hong, GUO Cheng. Constitutive modelling for high temperature behavior of 1Cr12Ni3Mo2VNbN martensitic steel [J]. Materials Science and Engineering A, 2011, 528: 5081–5087.

    Article  Google Scholar 

  24. WANG Zhen-jun, QI Le-hua, ZHOU Ji-ming, GUAN Jun-tao, LIU Jian. A constitutive model for predicting flow stress of Al18B4O33w/AZ91D composite during hot compression and its validation [J]. Computational Materials Science, 2011, 50: 2422–2426.

    Article  Google Scholar 

  25. HE An, CHEN Lin, HU Sheng, WANG Can, HUANGFU Le-xiao. Constitutive analysis to predict high temperature flow stress in 20CrMo continuous casting billet [J]. Materials & Design, 2013, 46: 54–60.

    Article  Google Scholar 

  26. LI Hong-ying, LI Yang-hua, WEI Dong-dong, LIU Jiao-jiao, WANG Xiao-feng. Constitutive equation to predict elevated temperature flow stress of V150 grade oil casing steel [J]. Materials Science and Engineering A, 2011, 530: 367–372.

    Article  Google Scholar 

  27. HAN Ying, QIAO Guan-jun, SUN Yu, ZOU De-ning. Modeling the constitutive relationship of Cr20Ni25Mo4Cu superaustenitic stainless steel during elevated temperature [J]. Materials Science and Engineering A, 2012, 539: 61–67.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-sheng Qian  (钱东升).

Additional information

Foundation item: Project(51135007) supported by the National Natural Science Foundation of China; Project(IRT13087) supported by the Innovative Research Team Development Program of Ministry of Education of China; Project(2012-86) supported by the High-end Talent Leading Program of Hubei Province, China; Project(2012-P08) supported by State Key Laboratory of Materials Processing and Die & Mould Technology, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, Ds., Peng, Yy. & Deng, Jd. Hot deformation behavior and constitutive modeling of Q345E alloy steel under hot compression. J. Cent. South Univ. 24, 284–295 (2017). https://doi.org/10.1007/s11771-017-3429-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-017-3429-5

Key words

Navigation