Skip to main content
Log in

Robust elastic impedance inversion using L1-norm misfit function and constraint regularization

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The classical elastic impedance (EI) inversion method, however, is based on the L2-norm misfit function and considerably sensitive to outliers, assuming the noise of the seismic data to be the Guassian-distribution. So we have developed a more robust elastic impedance inversion based on the L1-norm misfit function, and the noise is assumed to be non-Gaussian. Meanwhile, some regularization methods including the sparse constraint regularization and elastic impedance point constraint regularization are incorporated to improve the ill-posed characteristics of the seismic inversion problem. Firstly, we create the L1-norm misfit objective function of pre-stack inversion problem based on the Bayesian scheme within the sparse constraint regularization and elastic impedance point constraint regularization. And then, we obtain more robust elastic impedances of different angles which are less sensitive to outliers in seismic data by using the IRLS strategy. Finally, we extract the P-wave and S-wave velocity and density by using the more stable parameter extraction method. Tests on synthetic data show that the P-wave and S-wave velocity and density parameters are still estimated reasonable with moderate noise. A test on the real data set shows that compared to the results of the classical elastic impedance inversion method, the estimated results using the proposed method can get better lateral continuity and more distinct show of the gas, verifying the feasibility and stability of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. CLAEROUT J F, MUIR F. Robust modeling with erratic data [J]. Geophysics, 1973, 38(5): 826–844.

    Article  Google Scholar 

  2. TAYLOR H L, BANKS S C, MCCOY J F. Deconvolution with the L-one norm [J]. Geophysics, 1979, 44(1): 39–52.

    Article  Google Scholar 

  3. TARANTOLA A. Inverse problem theory, methods for data fitting and model parameter estimation [M]. New York: Elsevier Science Publishers, 1987.

    MATH  Google Scholar 

  4. SCALES J A, GERSZTENKOR N. Robust methods in inverse theory [J]. Inverse Problems, 1988, 4: 1071–1091.

    Article  MathSciNet  MATH  Google Scholar 

  5. JI J. Robust inversion using biweight norm and its application to seismic inversion [J]. Exploration Geophysics, 2012, 43(2): 70–76.

    Google Scholar 

  6. ZHANG F C, DAI R H, LIU H Q. Seismic inversion based on L1-norm misfit function and total variation regularization [J]. Journal of Applied Geophysics, 2014, 109: 111–118.

    Article  Google Scholar 

  7. SAFON C, VASSEUR G, CUER M. Some applications of linear programming to the inverse gravity problem [J]. Geophysics, 1977, 42(6): 1215–1229.

    Article  Google Scholar 

  8. DAUBECHIES I, DEVORE R, FORNASIER M, GUNTURK C S. Iteratively reweighted least squares minimization for sparse recovery [J]. Communications on Pure and Applied Mathematics, 2010, 63: 1–38.

    Article  MathSciNet  MATH  Google Scholar 

  9. ASTER R C, BORCHERS B, THURBER C H. Parameter estimation and inverse problems [M]. 2nd edition. New York: Elsevier Academic Press, 2013.

    MATH  Google Scholar 

  10. TIKHONOV A N, ARSENIN V Y. Solutions of ill-posed problems [J]. Mathematics of Computation, 1977, 32(144): 1320–1322.

    Google Scholar 

  11. TIKHONOV A N, GONCHARSKY A V, STEPANOV V V, YAGOLA A G. Numerical methods for the solution of ill-posed problems [M]. New York: Mathematics and Its Applications, 1995.

    Book  MATH  Google Scholar 

  12. WANG Y F. Seismic impedance inversion using l1-norm regularization and gradient descent methods [J]. J Inv Ill-Posed Problems, 2011, 18: 823–838.

    Google Scholar 

  13. BULAND A, OMRE H. Bayesian linearized AVO inversion [J]. Geophysics, 2003, 68(1): 185–198.

    Article  Google Scholar 

  14. DOWNTON J E. Seismic parameter estimation from AVO inversion [D]. Calgary: University of Calgary, 2005.

    Google Scholar 

  15. THEUNE U, JENSAS I, EIDSIVIK J. Analysis of prior models for a blocky inversion of seismic AVA data [J]. Geophysics, 2010, 75(3): 25–35.

    Article  Google Scholar 

  16. ALEMIE W, SACCHI M D. High-resolution three-term AVO inversion by means of a trivariate Cauchy probability distribution [J]. Geophysics, 2011, 76(3): 43–55.

    Article  Google Scholar 

  17. ZONG Z Y, YIN X Y, WU G C. Elastic impedance parameterization and inversion with Young’s modulus and Poisson’s ratio [J]. Geophysics, 2013, 78(6): 35–42.

    Article  Google Scholar 

  18. CONNOLLY P. Elastic impedance [J]. The Leading Edge, 1999, 18(4): 438–452.

    Article  Google Scholar 

  19. WHITCOMBE D N. Elastic impedance normalization [J]. Geophysics, 2002, 67(1): 60–62.

    Article  Google Scholar 

  20. ULRYCH T J, SACCHI M D, WOODBURY A. A Bayes tour of inversion: A tutorial [J]. Geophysics, 2001, 66(1): 55–69.

    Article  Google Scholar 

  21. GERSZTENKORN A, BEDNAR J B, LINES L R. Robust iterative inversion for the one-dimensional acoustic wave equation [J]. Geophysics, 1986, 51(2): 357–368.

    Article  Google Scholar 

  22. GUITTON A, SYNES W W. Robust inversion of seismic data using the Huber norm [J]. Geophysics, 2003, 68(4): 1310–1319.

    Article  Google Scholar 

  23. TARANTOLA A. Inverse problem theory and methods for model parameter estimation [M]. New York: Society for Industrial Mathematic, 2005.

    Book  MATH  Google Scholar 

  24. LINDSAY R, KOUGHNET V. Sequential Backus averaging: upscaling well logs to seismic wavelengths [J]. The Leading Edge, 2001, 20(2): 188–191.

    Article  Google Scholar 

  25. ROYLE A J. Exploitation of an oil field using AVO and post-stack rock property analysis methods [J]. CREWES Research Report, 2001, 13–17.

    Google Scholar 

  26. FOCHT G W, BAKER F E. Geophysical case history of the two hills colony gas field of alberta [J]. Geophysics, 1985, 50(7): 1061–1076.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang-zhi Zhang  (张广智).

Additional information

Foundation item: Projects(U1562215, 41674130, 41404088) supported by the National Natural Science Foundation of China; Projects(2013CB228604, 2014CB239201) supported by the National Basic Research Program of China; Projects(2016ZX05027004-001, 2016ZX05002006-009) supported by the National Oil and Gas Major Projects of China; Project(15CX08002A) supported by the Fundamental Research Funds for the Central Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Xp., Zhang, Gz., Song, Jj. et al. Robust elastic impedance inversion using L1-norm misfit function and constraint regularization. J. Cent. South Univ. 24, 227–235 (2017). https://doi.org/10.1007/s11771-017-3423-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-017-3423-y

Key words

Navigation