Journal of Central South University

, Volume 23, Issue 11, pp 2784–2791 | Cite as

Synthesis of size-controllable Fe3O4 magnetic submicroparticles and its biocompatible evaluation in vitro

  • Qing-hua Tian (田庆华)
  • Wen-bo Ning (宁文博)
  • Wei-jia Wang (王惟嘉)
  • Xiu-hong Yuan (袁秀洪)
  • Zhi-ming Bai (白志明)
Materials, Metallurgy, Chemical and Environmental Engineering
  • 80 Downloads

Abstract

Large scaled uniform and size-controllable magnetic submicroparticles (MSPs) were synthesized via solvothermal method with ferric chloride as iron source and sodium acetate as trapping agent. The influence of Fe3+ and NaAc contents on the size distribution of MSPs was investigated. The structural and morphological properties of the synthesized particles were studied by scanning electron microscopy (SEM), X-ray power diffraction (XRD) and vibrating sample magnetometer (VSM). The well-dispersed MSPs with size of 100-1000 nm were obtained by simply adjusting the contents of Fe3+ and NaAc. In addition, the hemolysis and cytotoxicity of Fe3O4 MSPs, and their ability to case arrest in cell life-cycles were studied. The results indicate that larger size could lead to lower hemolysis. From MTT(3-(4,5-dimethylthuazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, the interactions between MSPs and adhesive mouse fibroblast cell line(L929) were probed. Larger size of Fe3O4 MSPs demonstrates lower cell viability following an exposure to the cells.

Keywords

magnetite submicroparticles biocompatibility hemolysis cytotoxicity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    HÄFELI U, SCHÜTT W, TELLER J, ZBOROWSKI M. Scientific and clinical applications of magnetic drug carriers [M]. Springer Science & Business Media, 1997.CrossRefGoogle Scholar
  2. [2]
    LIAN Suo-yuan, WANG En-bo, KANG Zhen-hui, BAI Yun-peng, GAO Lei, JIANG Min, HU Chang-wen, XU Lin. Synthesis of magnetite nanorods and porous hematite nanorods [J]. Solid State Commun, 2004, 129: 485–490.CrossRefGoogle Scholar
  3. [3]
    ZAITSEV V S, FILIMONOV D S, PRESNYAKOV I A, GAMBINO R J, CHU B. Physical and chemical properties of magnetite and magnetitepolymer nanoparticles and their colloidal dispersions [J]. Journal of Colloid and Interface Science, 1999, 212: 49–57.CrossRefGoogle Scholar
  4. [4]
    RAO C N R, KULKARNI G U, THOMAS P J, EDWARDS P P. Metal nanoparticles and their assemblies [J]. Chemical Society Reviews, 2000, 29(1): 27–35.CrossRefGoogle Scholar
  5. [5]
    WU K T, KUO P C, YAO Y D. Magnetic and optical properties of Fe3O4 nanoparticle ferrofluids prepared by coprecipitation technique [J]. IEEE Transactions on Magnetics, 2001, 37(4): 2651–2653.CrossRefGoogle Scholar
  6. [6]
    XU Jing, YANG Hai-bin, FU Wu-you, DU Kai, SUI Yong-ming, CHEN Jiu-ju, ZENG Yi, LI Ming-hui, ZOU Guang-tian. Preparation and magnetic properties of magnetite nanoparticles by sol–gel method [J]. Journal of Magnetism and Magnetic Materials, 2007, 309(2): 307–311.CrossRefGoogle Scholar
  7. [7]
    GAO Guan-hua, LIU Xiao-he, SHI Rong-rong, ZHOU Ke-chao, SHI You-guo, MA Ren-zhi. Shape-controlled synthesis and magnetic properties of monodisperse Fe3O4 nanocubes [J]. Crystal Growth & Design, 2010, 10(7): 2888–2894.CrossRefGoogle Scholar
  8. [8]
    HYEON T, LEE S S, PARK J, CHUNG Y, NA H B. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process [J]. Journal of the American Chemical Society, 2001, 123(51): 12798–12801.CrossRefGoogle Scholar
  9. [9]
    CARUSO F, CARUSO R A, MÖHWALD H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating [J]. Science, 1998, 282(5391): 1111–1114.CrossRefGoogle Scholar
  10. [10]
    CARUSO F, SPASOVA M, SALGUEIRIÑO-MACEIRA V, LIZMARZÁN L M. Multilayer assemblies of silica-encapsulated gold nanoparticles on decomposable colloid templates [J]. Advanced Materials, 2001, 13(14): 1090–1094.CrossRefGoogle Scholar
  11. [11]
    NEL A, XIA T, MÄDLER L. Toxic potential of materials at the nanolevel [J]. Science, 2006, 311(5761): 622–627.CrossRefGoogle Scholar
  12. [12]
    SERVICE R F. Nanotechnology grows up [J]. Science, 2004, 304(5678): 1732–1734.CrossRefGoogle Scholar
  13. [13]
    OBERDÖRSTER G, OBERDÖRSTER E, OBERDÖRSTER J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles [J]. Environmental Health Perspectives, 2005, 113(7): 823–839.CrossRefMATHGoogle Scholar
  14. [14]
    POLAND C A, DUFFIN R, KINLOCH I, MAYNARD A, WALLACE W A, SEATON A, STONE V, BROWN S, MACNEE W, DONALDSON K. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study [J]. Nature Nanotechnology, 2008, 3(7): 423–428.CrossRefGoogle Scholar
  15. [15]
    TAKAGI A, HIROSE A, NISHIMURA T, FUKUMORI N, OGATA A, OHASHI N, KITAJIMA S, KANNO J. Induction of mesothelioma in p53+/-mouse by intraperitoneal application of multi-wall carbon nanotube [J]. The Journal of Toxicological Sciences, 2008, 33(1): 105–116.CrossRefGoogle Scholar
  16. [16]
    YANG J, PARK S B, YOON H G, HUH Y M, HAAM S. Preparation of poly caprolactone nanoparticles containing magnetite for magnetic drug carrier [J]. International Journal of Pharmaceutics, 2006, 324(2): 185–190.CrossRefGoogle Scholar
  17. [17]
    PANKHURST Q A, CONNOLLY J, JONES S K, DOBSON J. Applications of magnetic nanoparticles in biomedicine [J]. Journal of Physics D: Applied Physics, 2003, 36(13): R167.CrossRefGoogle Scholar
  18. [18]
    MÜLLER R H, MAAEN S, WEYHERS H, SPECHTB F, LUCKSB J S. Cytotoxicity of magnetite-loaded polylactide, polylactide/glycolide particles and solid lipid nanoparticles [J]. International Journal of Pharmaceutics, 1996, 138(1): 85–94.CrossRefGoogle Scholar
  19. [19]
    NEL A, XIA T, MÄDLER L, LI N. Toxic potential of materials at the nanolevel [J]. Science, 2006, 311(5761): 622–627.CrossRefGoogle Scholar
  20. [20]
    WARHEIT D B, WEBB T R, SAYES C M, COLVIN V L, REED L K. Pulmonary instillation studies with nanoscale TiO2 rods and dots in rats: Toxicity is not dependent upon particle size and surface area [J]. Toxicological Sciences, 2006, 91(1): 227–236.CrossRefGoogle Scholar
  21. [21]
    DENG Hong, LI Xiao-lin, PENG Qing, WANG Xun, CHEN Jin-ping, LI Ya-dong. Monodisperse magnetic single-crystal ferrite microspheres [J]. Angewandte Chemie, 2005, 117(18): 2842–2845.CrossRefGoogle Scholar
  22. [22]
    TING Fan, PAN Deng-ke, ZHANG Hui. Study on formation mechanism by monitoring the morphology and structure evolution of nearly monodispersed Fe3O4 submicroparticles with controlled particle sizes [J]. Industrial & Engineering Chemistry Research, 2011, 50(15): 9009–9018.CrossRefGoogle Scholar
  23. [23]
    SUN J, GU G, QIAN Y. Influence of different contact ways and extracting conditions on the hemolytic effect of biomaterials [J]. Journal of Biomedical Engineering, 2003, 20(1): 8–10. (in Chinese)Google Scholar
  24. [24]
    ZHANG Wen-yun, SHEN Yi, LI Nan. Evaluation of biocompatibility of fiber-reinforced dental composites [J]. Medical Journal of Chinese People’s Liberation Army, 2004, 29: 345–347. (in Chinese)Google Scholar
  25. [25]
    PIETERS R, LOONEN A H, HUISMANS D R, BROEKEMA G J, DIRVEN M W, HEYENBROK M W, HAHLEN K, VEERMAN A J. In vitro drug sensitivity of cells from children with leukemia using the MTT assay with improved culture conditions [J]. Blood, 1990, 76(11): 2327–2336.Google Scholar
  26. [26]
    LI Yun-tao, LIU Jing, ZHONG Yue-jiao, ZHANG Jia, WANG Zi-yu, WANG Li, AN Yan-li, LIN Mei, GAO Zhi-qiang, ZHANG Dongheng. Biocompatibility of Fe3O4@Au composite magnetic nanoparticles in vitro and in vivo [J]. International Journal of Nanomedicine, 2011, 6: 2805–2819.CrossRefGoogle Scholar
  27. [27]
    KIM D H, LEE S H, KIM K N, SHIM I B, LEE Y K. Cytotoxicity of ferrite particles by MTT and agar diffusion methods for hyperthermic application [J]. Journal of Magnetism and Magnetic Materials, 2005, 293(1): 287–292.MathSciNetCrossRefGoogle Scholar
  28. [28]
    KARLSSON H L, GUSTAFSSON J, CRONHOLM P, MÖLLER L. Size-dependent toxicity of metal oxide particles—A comparison between nano-and micrometer size [J]. Toxicology Letters, 2009, 188(2): 112–118.CrossRefGoogle Scholar

Copyright information

© Central South University Press and Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Qing-hua Tian (田庆华)
    • 1
  • Wen-bo Ning (宁文博)
    • 1
  • Wei-jia Wang (王惟嘉)
    • 1
  • Xiu-hong Yuan (袁秀洪)
    • 1
  • Zhi-ming Bai (白志明)
    • 2
  1. 1.School of Metallurgy and EnviromentCental South UniversityChangshaChina
  2. 2.Haikou Municipal People’s HospitalHaikouChina

Personalised recommendations