Skip to main content
Log in

Enhanced dielectric permittivity of graphite oxide/polyimide composite films

  • Materials, Metallurgy, Chemical and Environmental Engineering
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Graphite oxide (GO) was prepared by the pressurized oxidation method and incorporated into polyimide (PI) matrix to fabricate high-k composite films by in-situ polymerization and subsequent thermal treatment. The results show that the as-prepared GO had good dispersion and compatibility in PI matrix due to the introduction of abundant oxygen-containing functional groups during the oxidation. The residual graphitic domains and the thermal treatment induced reduction of GO further enhanced the dielectric permittivity of the resulting GO–PI composites. The dielectric permittivity of the GO–PI composites exhibited a typical percolation behavior with a percolation threshold of 0.0347 of volume ratio and a critical exponent of 0.837. Near the percolation threshold, the dielectric permittivity of the GO–PI composite increased to 108 at 102 Hz and was 26 times that of the pure PI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LU J, MOON K S, XU J, WONG C P. Synthesis and dielectric properties of novel high-K polymer composites containing in-situ formed silver nanoparticles for embedded capacitor applications [J]. Journal of Materials Chemistry, 2006, 16(16): 1543–1548.

    Article  Google Scholar 

  2. WANG Y, ZHOU X, CHEN Q, CHU B J, ZHANG Q M. Recent development of high energy density polymers for dielectric capacitors [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2010, 17(4): 1036–1042.

    Article  Google Scholar 

  3. WANG L, PIAO X, ZOU H, WANG Y, LI H. High dielectric, dynamic mechanical and thermal properties of polyimide composite film filled with carbon-coated silver nanowires [J]. Applied Physics A, 2015, 118(1): 243–248.

    Article  Google Scholar 

  4. HE G, ZHOU J, TAN K, LI H. Preparation, morphology and properties of acylchloride-grafted multiwall carbon nanotubes/ fluorinated polyimide composites [J]. Composites Science and Technology, 2011, 71(16): 1914–1920.

    Article  Google Scholar 

  5. DANG Z M, PENG B, XIE D, YAO S H, JIANG M J, BAI J. High dielectric permittivity silver/polyimide composite films with excellent thermal stability [J]. Applied Physics Letters, 2008, 92(11): 112910.

    Article  Google Scholar 

  6. XU J, WONG C P. Effect of the polymer matrices on the dielectric behavior of a percolative high-k polymer composite for embedded capacitor applications [J]. Journal of Electronic Materials, 2006, 35(5): 1087–1094.

    Article  Google Scholar 

  7. DANG Z M, WU J P, XU H P, YAO S H, JIANG M J, BAI J. Dielectric properties of upright carbon fiber filled poly(vinylidene fluoride) composite with low percolation threshold and weak temperature dependence [J]. Applied Physics Letters, 2007, 91(7): 072912.

    Article  Google Scholar 

  8. HA H W, CHOUDHURY A, KAMAL T, KIM D H, PARK S Y. Effect of chemical modification of graphene on mechanical, electrical, and thermal properties of polyimide/graphene nanocomposites [J]. ACS Applied Materials & Interfaces, 2012, 4(9): 4623–4630.

    Article  Google Scholar 

  9. HUANG T, XIN Y, LI T, NUTT S, SU C, CHEN H, LIU P, LAI Z. Modified graphene/polyimide nanocomposites: Reinforcing and tribological effects [J]. ACS Applied Materials & Interfaces, 2013, 5(11): 4878–4891.

    Article  Google Scholar 

  10. POTTS J R, DREYER D R, BIELAWSKI C W, RUOFF R S. Graphene-based polymer nanocomposites [J]. Polymer, 2011, 52(1): 5–25.

    Article  Google Scholar 

  11. LIU J, TIAN G, QI S, WU Z, WU D. Enhanced dielectric permittivity of a flexible three-phase polyimide–graphene–BaTiO3 composite material [J]. Materials Letters, 2014, 124: 117–119.

    Article  Google Scholar 

  12. TIAN G, SONG J, LIU J, QI S, WU D. Enhanced dielectric permittivity and thermal stability of graphene-polyimide nanohybrid films [J]. Soft Materials, 2014, 12(3): 290–296.

    Article  Google Scholar 

  13. LIU J, SONG J, QI S, TIAN G, WU D. Enhanced dielectric permittivity of fluorine polyimide matrix with embedded grapheme [J]. Physica Status Solidi–Rapid Research Letters, 2013, 7(8): 575–578.

    Article  Google Scholar 

  14. FAN P, WANG L, YANG J, CHEN F, ZHONG M. Graphene/ poly(vinylidene fluoride) composites with high dielectric constant and low percolation threshold [J]. Nanotechnology, 2012, 23(36): 365702–365709.

    Article  Google Scholar 

  15. FAN X, PENG W, LI Y, LI X, WANG S, ZHANG G, ZHANG F. Deoxygenation of exfoliated graphite oxide under alkaline conditions: A green route to graphene preparation [J]. Advanced Materials, 2008, 20(23): 4490–4493.

    Article  Google Scholar 

  16. LIAO K H, MITTAL A, BOSE S, LEIGHTON C, MKHOYAN K A, MACOSKO C W. Aqueous only route toward graphene from graphite oxide [J]. ACS Nano, 2011, 5(2): 1253–1258.

    Article  Google Scholar 

  17. LIN Z, YAO Y, LI Z, LIU Y, LI Z, WONG C P. Solvent-assisted thermal reduction of graphite oxide [J]. The Journal of Physical Chemistry C, 2010, 114(35): 14819–14825.

    Article  Google Scholar 

  18. KOU L, LIU Z, HUANG T, ZHENG B, TIAN Z, DENG Z, GAO C. Wet-spun, porous, orientational graphene hydrogel films for high-performance supercapacitor electrodes [J]. Nanoscale, 2015, 7(9): 4080–4087.

    Article  Google Scholar 

  19. CHUA C K, PUMERA M. Chemical reduction of graphene oxide: A synthetic chemistry viewpoint [J]. Chemical Society Reviews, 2014, 43(1): 291–312.

    Article  Google Scholar 

  20. BAO C L, SONG L, XING W Y, YUAN B H, WILKIE C A, HUANG J L, GUO Y Q, HU Y. Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending [J]. Journal of Materials Chemistry, 2012, 22(13): 6088–6096.

    Article  Google Scholar 

  21. ARSAT R, BREEDON M, SHAFIEI M, SPIZZIRI P G, GILJE S, KANER R B, KALANTAR-ZADEH K, WLODARSKI W. Graphene-like nano-sheets for surface acoustic wave gas sensor applications [J]. Chemical Physics Letters, 2009, 467(4/5/6): 344–347.

    Article  Google Scholar 

  22. DUTTA S, RAY C, SARKAR S, PRADHAN M, NEGISHI Y, PAL T. Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: A platform for sers based low-level detection of uranyl ion [J]. ACS Applied Materials & Interfaces, 2013, 5(17): 8724–8732.

    Article  Google Scholar 

  23. DREYER D R, PARK S, BIELAWSKI C W, RUOFF R S. The chemistry of graphene oxide [J]. Chemical Society Reviews, 2010, 39(1): 228–240.

    Article  Google Scholar 

  24. LIAO W H, YANG S Y, HSIAO S T, WANG Y S, LI S M, TIEN H W, MA C C M, ZENG S J. A novel approach to prepare graphene oxide/soluble polyimide composite films with a low dielectric constant and high mechanical properties [J]. RSC Advances, 2014, 4(93): 51117–51125.

    Article  Google Scholar 

  25. NAN C W. Physics of inhomogeneous inorganic materials [J]. Progress in Materials Science, 1993, 37(1): 1–116.

    Article  Google Scholar 

  26. LIAO W H, YANG S Y, HSIAO S T, WANG Y S, LI S M, MA C C M, TIEN H W, ZENG S J. Effect of octa(aminophenyl) polyhedral oligomeric silsesquioxane functionalized graphene oxide on the mechanical and dielectric properties of polyimide composites [J]. ACS Applied Materials & Interfaces, 2014, 6(18): 15802–15812.

    Article  Google Scholar 

  27. WANG J Y, YANG S Y, HUANG Y L, TIEN H W, CHIN W K, MA C C M. Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situpolymerization [J]. Journal of Materials Chemistry, 2011, 21(35): 13569–13575.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng-feng Li  (李衡峰).

Additional information

Foundation item: Project(2013JSJJ002) supported by the Faculty Research Fund of Central South University, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Wang, Y. & Li, Hf. Enhanced dielectric permittivity of graphite oxide/polyimide composite films. J. Cent. South Univ. 23, 2747–2753 (2016). https://doi.org/10.1007/s11771-016-3336-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-016-3336-1

Keywords

Navigation