Skip to main content
Log in

Effect of binary conductive additive mixtures on electrochemical performance of polyoxomolybdate as cathode material of lithium ion battery

  • Materials, Metallurgy, Chemical and Environmental Engineering
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Binary carbon mixtures, carbon black ECP 600JD (ECP) combined with vapor grown carbon fiber (VGCF) or carbon nanotube (CNT), or graphene (Gr) in different mass ratios, are investigated as the conductive additives for the cathode material polyoxomolybadate Na3[AlMo6O24H6] (NAM). Field emission scanning electron microscopy and energy dispersive X-ray spectroscopy show that the surfaces of NAM particles are covered homogeneously with the binary conductive additive mixtures except the combination of ECP and CNT. The optimum combination is the mixture of ECP and VGCF, which shows higher discharge capacity than the combinations of ECP and CNT or Gr. Initial discharge capacities of 364, 339, and 291 mA·h/g are obtained by the combination of ECP and VGCF in the mass ratios of 2:1, 1:1, and 1:2, respectively. The results of electrochemical impedance spectra and 4-pin probe measurements demonstrate that the combination of ECP and VGCF exhibits the highest electrical conductivity for the electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LINDEN D, REDDY T B. Handbook of batteries: Third edition [M]. New York: McGraw-Hill, 2001.

    Google Scholar 

  2. AIFANTIS K E, HACKNEY S A, KUMAR R V. High energy density lithium batteries: Materials, engineering, applications [M]. Germany: Wiley-VCH, 2010.

    Book  Google Scholar 

  3. ABRAHAM K M, SCHALKWIJK W A V, HASSOUN J. Lithium batteries: Advanced technologies and applications [M]. New Jersey: John Wiley & Sons, Inc, 2013.

    Google Scholar 

  4. AURBACH D. Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries [J]. J Power Sources, 2000, 89: 206–218.

    Article  Google Scholar 

  5. TARASCON J M, ARMAND M. Review article Issues and challenges facing rechargeable lithium batteries [J]. Nature, 2001, 414: 359–367.

    Article  Google Scholar 

  6. WHITTINGHAM M S. Lithium batteries and cathode materials [J]. Chem Rev, 2004, 104: 4271–4301.

    Article  Google Scholar 

  7. CABANA J, MONCONDUIT L, LARCHER D, PALACÍN M R. Beyond intercalation-based Li-Ion batteries: the state of the art and challenges of electrode materials reacting through conversion reactions [J]. Adv Mater, 2010, 22: E170–E192.

    Article  Google Scholar 

  8. ELLIS B L, LEE K T, NAZAR L F. Positive electrode materials for Li-ion and Li-batteries [J]. Chem Mater, 2010, 22: 691–714.

    Article  Google Scholar 

  9. GOODENOUGH J B, KIM Y. Challenges for rechargeable Li batteries [J]. Chem Mater, 2010, 22: 587–603.

    Article  Google Scholar 

  10. XU B, QIAN D N, WANG Z Y, MENG S Y. Recent progress in cathode materials research for advanced lithium ion batteries [J]. Mater Sci Eng, 2012, R73: 51–65.

    Google Scholar 

  11. GOODENOUGH J B, PARK K S. The Li-ion rechargeable battery: A perspective [J]. J Am Chem Soc, 2013, 135: 1167–1176.

    Article  Google Scholar 

  12. MELOT B C, TARASCON J M. Design and preparation of materials for advanced electrochemical storage [J]. Acc Chem Res, 2013, 46: 1226–1238.

    Article  Google Scholar 

  13. MIZUSHIMA K, JONES P C, WISEMAN P J, GOODENOUGH J B. LixCoO2 (0<x<1): A new cathode material for batteries of high energy density [J]. Mater Res Bull, 1980, 15: 783–789.

    Article  Google Scholar 

  14. REIMERS J N, DAHN J R. Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2 [J]. J Electrochem Soc, 1992, 139: 2091–2097.

    Article  Google Scholar 

  15. OHZUKU T, UEDA A. Solid-state redox reactions of LiCoO2(R3m) for 4 volt secondary lithium cells [J]. J Electrochem Soc, 1994, 141: 2972–2977.

    Article  Google Scholar 

  16. LEVI M D, SALITRA G, MARKOVSKY B, TELLER H, AURBACH D, HEIDER U, HEIDERB L. Solid-state electrochemical kinetics of Li-ion intercalation into Li1-xCoO2: Simultaneous application of electroanalytical techniques SSCV, PITT, and EIS [J]. J Electrochem Soc, 1999, 164(4): 1279–1289.

    Article  Google Scholar 

  17. OHZUKU T, MAKIMURA Y. Layered lithium insertion material of LiNi1/2Mn1/2O2: A possible alternative to LiCoO2 for advanced lithium-ion batteries [J]. Chem Lett, 2001, 30(8): 744–745.

    Article  Google Scholar 

  18. OHZUKU T, MAKIMURA Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries [J]. Chem Lett, 2001, 30(7): 642–643.

    Article  Google Scholar 

  19. LU Z H, BEAULIEU L Y, DONABERGER R A, THOMAS C L, DAHN J R. Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2 [J]. J Electrochem Soc, 2002, 149(6): A778–A791.

    Article  Google Scholar 

  20. CHO J, KIM H, PARK B. Comparison of overcharge behavior of AlPO4-coated LiCoO2 and LiNi0.8Co0.1Mn0.1O2 cathode materials in Li-ion cells [J]. J Electrochem Soc, 2004, 151(10): A1707–1711.

    Article  Google Scholar 

  21. MENG X L, DOU S M, WANG W L. High power and high capacity cathode material LiNi0.5Mn0.5O2 for advanced lithium-ion batteries [J]. J Power Sources, 2008, 184(2): 489–493.

    Article  Google Scholar 

  22. LI Z, DU F, BIE X, ZHANG D, CAI Y, CUI X, WANG C. Electrochemical kinetics of the Li[Li0.23Co0.3Mn0.47]O2 cathode material studied by GITT and EIS [J]. J Phys Chem C, 2010, 114: 22751–22757.

    Article  Google Scholar 

  23. TARASCON J M, GUYOMARD D. The Li1+xMn2O4/C rockingchair system: A review [J]. Electrochimica Acta, 1993, 39(9): 1221–1231.

    Article  Google Scholar 

  24. GUMMOW R J, KOCK A D, THACKERAY M M. Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells [J]. Solid State Ionics, 1994, 69(1): 59–67.

    Article  Google Scholar 

  25. JANG D H, SHIN Y J, OH S M. Dissolution of spinel oxides and capacity losses in 4 V Li/LixMn2O4 cells [J]. J Electrochem Soc, 1996, 143: 2204–2211.

    Article  Google Scholar 

  26. XIA Y Y, ZHOU Y H, YOSHIO M. Capacity fading on cycling of 4 V Li/LiMn2O4 cells [J]. J Electrochem Soc, 1997, 144(8): 2593–2600.

    Article  Google Scholar 

  27. THACKERAY M M, SHAO-HORN Y, KAHAIAN A J, KEPLER K D, SKINNER E, VAUGHEY J T, HACKNEY S A. Structural fatigue in spinel electrodes in high voltage (4 V) Li/LixMn2O4 cells [J]. Electrochem Solid-State Lett, 1998, 1: 7–9.

    Article  Google Scholar 

  28. PADHI A K. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries [J]. J Electrochem Soc, 1997, 144(4): 1188–1194.

    Article  Google Scholar 

  29. PADHI A K, NANJUNDASWAMY K S, MASQUELIER C, OKADA S, GOODENOUGH J B. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates [J]. J Electrochem Soc, 1997, 144(5): 1609–1613.

    Article  Google Scholar 

  30. HUANG H, YIN S C, NAZAR L F. Approaching theoretical capacity of LiFePO4 at room temperature at high rates [J]. Electrochem Solid-State Lett, 2001, 4(10): A170–A172.

    Article  Google Scholar 

  31. DELACOURT C, POIZOT P, TARASCON J M, MASQUELIER C. The existence of a temperature-driven solid solution in LixFePO4 for 0<x<1 [J]. Nature Mater, 2005, 4: 254–260.

    Article  Google Scholar 

  32. SONG M K, ZHANG Y G, CAIRNS E J. A long-life, high-rate lithium/sulfur cell: A multifaceted approach to enhancing cell performance [J]. Nano Lett, 2013, 13: 5891–5899.

    Article  Google Scholar 

  33. SONOYAMA N, SUGANUMA Y, KUME T, QUAN Z. Lithium intercalation reaction into the Keggin type polyoxomolybdates [J]. J Power Sources, 2011, 196(16): 6822–6827.

    Article  Google Scholar 

  34. UEMATSU S, QUAN Z, SUGANUMA Y, SONOYAMA N. Reversible lithium charge–discharge property of bi-capped Keggintype polyoxovanadates [J]. J Power Sources, 2012, 217: 13–20.

    Article  Google Scholar 

  35. NI E F, UEMATSU S, QUAN Z, SONOYAMA N. Improved electrochemical property of nanoparticle polyoxovanadate K7NiV13O38 as cathode material for lithium battery [J]. J Nanopart Res, 2013, 15: 1732–1741.

    Article  Google Scholar 

  36. CHEN W, HUANG L J, HU J, LI T F, JIA F F, SONG Y F. Connecting carbon nanotubes to polyoxometalate clusters for engineering high-performance anode materials [J]. Phys Chem Chem Phys, 2014, 16: 19668–19673.

    Article  Google Scholar 

  37. KUME K, KAWASAKI N, WANG H, YAMADA T, YOSHIKAWA H, AWAGA K. Enhanced capacitor effects in polyoxometalate/graphene nanohybrid materials: A synergetic approach to high performance energy storage [J]. J Mater Chem A, 2014, 2: 3801–3807.

    Article  Google Scholar 

  38. NAUMAAN R, KHAN N, MAHMOOD N, LV C, SIMA G, ZHANG J, HAO J, HOU Y, WEI Y. Pristine organo-imido polyoxometalates as an anode for lithium ion batteries [J]. RSC Adv, 2014, 4: 7374–7379.

    Article  Google Scholar 

  39. NI E F, KUME T, UEMATSU S, QUAN Z, SONOYAMA N. Effect of annealing treatment on the electrochemical properties of polyoxomolybdate K4[SiMo12O40] as cathode material of lithium battery [J]. Electrochemistry, 2014, 82: 14–18.

    Article  Google Scholar 

  40. NI E F, UEMATSU S, SONOYAMA N. Anderson type polyoxomolybdate as cathode material of lithium ion battery and its reaction mechanism [J]. J Power Sources, 2014, 267: 673–681.

    Article  Google Scholar 

  41. NI E F, UEMATSU S, SONOYAMA N. Lithium intercalation into the polyoxovanadate K7MnV13O38 as cathode material of lithium ion battery [J]. Solid State Ionics, 2014, 268: 222–225.

    Article  Google Scholar 

  42. WANG H, YAMADA T, HAMANAKA S, YOSHIKAWA H, AWAGA K. Cathode composition dependence of battery performance of polyoxometalate (POM) molecular cluster batteries [J]. Chem Lett, 2014, 43: 1067–1069.

    Article  Google Scholar 

  43. NI E F, UEMATSU S, TSUKADA T, SONOYAMA N. Lithium intercalation into polyoxomolybdate (NH4)6[NiMo9O32] as the cathode material of lithium battery [J]. Solid State Ionics, 2016, 285: 83–90.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Er-fu Ni  (倪尔福).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Wl., Ni, Ef., Li, Xh. et al. Effect of binary conductive additive mixtures on electrochemical performance of polyoxomolybdate as cathode material of lithium ion battery. J. Cent. South Univ. 23, 2506–2512 (2016). https://doi.org/10.1007/s11771-016-3310-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-016-3310-y

Key words

Navigation