Skip to main content
Log in

Sliding mode control of solid state transformer using a three-level hysteresis function

  • Mechanical Engineering, Control Science and Information Engineering
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The solid state transformer (SST) can be viewed as an energy router in energy internet. This work presents sliding mode control (SMC) to improve dynamic state and steady state performance of a three-stage (rectifier stage, isolated stage and inverter stage) SST for energy internet. SMC with three-level hysteresis sliding functions is presented to control the input current of rectifier stage and output voltage of inverter stage to improve the robustness under external disturbance and parametric uncertainties and reduce the switching frequency. A modified feedback linearization technique using isolated stage simplified model is presented to achieve satisfactory regulation of output voltage of the isolated stage. The system is tested for steady state operation, reactive power control, dynamic load change and voltage sag simulations, respectively. The switching model of SST is implemented in Matlab/ Simulink to verify the SST control algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DANNIER A, RIZZO R. An overview of power electronic transformer: Control strategies and topologies [J]. International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 2012, 20/21/22: 1552–1557.

    Article  Google Scholar 

  2. RONAN E, SUDHOFF S D, GLOVER S F, GALLOWAY D L. Application of power electronics to the distribution transformer [C]// Conference Record of APEC 2000. New Orleans: APEC, 2000: 861–867.

    Google Scholar 

  3. WANG D, MAO C, LU J, FAN S, PENG F Z. Theory and application of distribution electronic power transformer [J]. Electric Power Syst Res, 2007, 77: 219–226.

    Article  Google Scholar 

  4. ZHU H, LI Y, WANG P, LI Z, CHU Z. Design of power electronic transformer based on modular multilevel converter [C]// Asia-Pacific Power Energy Eng. Conf, Shanghai: APPEEC, 2012: 1–4.

    Google Scholar 

  5. SHE X, BURGOS R, WANG G, WANG F, HUANG A Q. Review of solid state transformer in the distribution system: From components to field application [C]// 2012 IEEE Energy Conversion Congress and Exposition (ECCE). Raleigh, USA: IEEE, 2012: 4077–4084.

    Chapter  Google Scholar 

  6. HUANG A Q, BALIGA J. FREEDM system: Role of power electronics and power semiconductors in developing an energy internet [C]// Proc of International Symposium on Power Semiconductor Devices, Barcelona: ISPSD, 2009.

    Google Scholar 

  7. SHE X, HUANG,A Q, LUKIC S, BARAN M E. On integration of solid-state transformer with zonal DC microgrid [J]. IEEE Transactions on Smart Grid, 2012, 3(2): 975–985.

    Article  Google Scholar 

  8. HEINEMANN L, MAUTHE G. The universal power electronics based distribution transformer, an unified approach [C]// Power Electronics Specialists Conference, 2001. PESC. 2001 IEEE 32nd Annual. Vancouver Canada: 2001: 504–509.

    Google Scholar 

  9. FALCONES S, MAO Xiao-lin, AYYANAR R. Topology comparison for Solid State Transformer implementation [C]// Power and Energy Society General Meeting. Minneapolis; IEEE, 2010: 1–10.

    Google Scholar 

  10. ZHAO Tie-fu, YANG Li-yu, WANG Jun, HUANG A Q. 270 kVA solid state transformer based on 10 kV sic power devices [C]// Electric Ship Technologies Symposium, 2007. ESTS '07. IEEE, Arlington: IEEE, 2007: 145–149, 21-23.

    Chapter  Google Scholar 

  11. BHATTACHARYA S, TIEFU Z, GANGYAO W, DUTTA S, SEUNGHUN B, YU D, PARKHIDEH B, ZHOU Xiao-hu, HUANG A Q. Design and development of generation-I silicon based Solid State Transformer [C]// Applied Power Electronics Conference and Exposition (APEC), 2010 Twenty-Fifth Annual IEEE Palm Springs, CA, USA: IEEE, 2010: 1666-1

    Google Scholar 

  12. BRANDO G, DANNIER A, DEL PIZZO A. A simple predictive control technique of power electronic transformers with high dynamic features [C]// PEMD 2010-BRIGHTON, UK: PEMD 2010: 19–21.

    Google Scholar 

  13. LIU H, YANG J, MAO C. Nonlinear control of electronic power transformer for distribution system using feedback linearization [C]// Power Engineering and Automation Conference (PEAM), 2011 IEEE, Wuhan, China: IEEE, 2011: 22–26.

    Google Scholar 

  14. LIU H, MAO C, WANG J L A D. Optimal regulator-based control of electronic power transformer for distribution systems [J]. Electric Power Systems Research, 2009(6): 863–870.

    Article  Google Scholar 

  15. UTKIN V L. Variable structure systems with sliding modes [J]. IEEE Transactions on Automat Contr, 1977, 22(2): 212–222.

    Article  MathSciNet  MATH  Google Scholar 

  16. JEZERNIK K, ZADRAVEC D. Sliding mode controller for a single phase inverter [C]// Proc IEEE APEC’90, Los Angeles, USA: IEEE, 1990: 185–190.

    Google Scholar 

  17. HOOSHMAND R, ATAEI M, REZAEI M H. Improving the dynamic performance of distribution electronic power transformers using sliding mode control [J]. Journal of Power Electronics, 2012, 12(1): 145–156.

    Article  Google Scholar 

  18. KUKRER O, KOMURCUGIL H, DOGANALP A. A three-level hysteresis function approach to the sliding mode control of single-phase UPS inverters [J]. IEEE Transactions on Ind Electron, 2009, 56: 3477–3486.

    Article  Google Scholar 

  19. ZHAO B, SONG Q, LIU W. Overview of dual-active-bridge isolated bidirectional DC–DC Converter for high-frequency-link power-conversion system [J]. IEEE Transactions on Power Electronics, 2014, 29(8): 4091–4106.

    Article  Google Scholar 

  20. CARDOZO D D M, BALDA J C, TROWLER D, MANTOOTH H A. Novel nonlinear control of dual active bridge using simplified converter model [C]// Proc IEEE Applied Power Electronics Conf and Exposition. Palm Springs, CA: IEEE, 2010: 321–327.

    Google Scholar 

  21. ZHAO B, SONG Q, LIU W. Efficiency characterization and optimization of isolated bidirectional dc-dc converter based on dual-phase-shift control for dc distribution application [J]. IEEE Transactions on Power Electron, 2013, 28(14): 1711–1727.

    Article  Google Scholar 

  22. HAQUE M T. Single-phase PQ theory [C]// Power Electronics Specialists Conference. 2002(4): 1815–1820.

    Google Scholar 

  23. ZHANG R, CARDINAL M, SZCZESNY P, DAME M. A grid simulator with control of single-phase power converters in d-q rotating frame [J]. Power Electronics Specialists Conference, 2002, 3: 1431–1436.

    Google Scholar 

  24. NAOUARA M W, BEN HANIAA B, SLAMA-BELKHODJAA I, MONMASSONB E, NAASSANIC A A. FPGA-based sliding mode direct control of single phase PWM boost rectifier [J]. Mathematics and Computers in Simulation, 2013(91): 249–261.

    Article  MathSciNet  Google Scholar 

  25. DUJIC D, MESTER A, CHAUDHURI T, COCCIA A, CANALES F, STEINKE J K. Laboratory scale prototype of a power electronic transformer for traction applications [C]// Proc 14th European Conf on Power Electron and Appl, Birmingham: IEEE, 2011: 1–10

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bao-long Liu  (刘宝龙).

Additional information

Foundation item: Projects(61403404, 71571187) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Bl., Zha, Yb. & Zhang, T. Sliding mode control of solid state transformer using a three-level hysteresis function. J. Cent. South Univ. 23, 2063–2074 (2016). https://doi.org/10.1007/s11771-016-3262-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-016-3262-2

Key words

Navigation