Skip to main content
Log in

Kerosene−alumina nanofluid flow and heat transfer for cooling application

  • Geological, Civil, Energy and Traffic Engineering
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Kerosene−alumina nanofluid flow and heat transfer in the presence of magnetic field are studied. The basic partial differential equations are reduced to ordinary differential equations which are solved semi analytically using differential transformation method. Velocity and temperature profiles as well as the skin friction coefficient and the Nusselt number are determined analytically. The influence of pertinent parameters such as magnetic parameter, nanofluid volume fraction, viscosity parameter and Eckert number on the flow and heat transfer characteristics is discussed. Results indicate that skin friction coefficient decreases with increase of magnetic parameter, nanofluid volume fraction and viscosity parameter. Nusselt number increases with increase of magnetic parameter and nanofluid volume fraction while it decreases with increase of Eckert number and viscosity parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. SHEIKHOLESLAMI M, ELLAHI R. Three dimensional mesoscopic simulation of magnetic field effect on natural convection of nanofluid [J]. International Journal of Heat and Mass Transfer 2015, 89: 799–808.

    Article  Google Scholar 

  2. SHEIKHOLESLAMI M, RASHIDI M M, GANJI D D. Effect of non-uniform magnetic field on forced convection heat transfer of Fe3O4-water nanofluid [J]. Comput Methods Appl Mech Engrg 2015, 294: 299–312.

    Article  MathSciNet  Google Scholar 

  3. SHEIKHOLESLAMI M, RASHIDI M M. Ferrofluid heat transfer treatment in the presence of variable magnetic field [J]. Eur Phys J Plus 2015: 130–115.

    Google Scholar 

  4. HATAMI M, SHEIKHOLESLAMI M, HOSSEINI M, GANJI C C. Analytical investigation of MHD nanofluid flow in non-parallel walls [J]. Journal of Molecular Liquids 2014, 194: 251–259.

    Article  Google Scholar 

  5. HATAMI M, SHEIKHOLESLAMI M, GANJI D D. Nanofluid flow and heat transfer in an asymmetric porous channel with expanding or contracting wall [J]. Journal of Molecular Liquids 2014, 195: 230–239.

    Article  Google Scholar 

  6. HATAMI M, GANJI D D. Heat transfer and flow analysis for SA-TiO2 non-Newtonian nanofluid passing through the porous media between two coaxial cylinders [J]. Journal of Molecular Liquids 2013, 188: 155–161.

    Article  Google Scholar 

  7. HATAMI M, GANJI D D. Natural convection of sodium alginate (SA) non-Newtonian nanofluid flow between two vertical flat plates by analytical and numerical methods [J]. Case Studies in Thermal Engineering 2014, 2: 14–22.

    Article  Google Scholar 

  8. SHEIKHOLESLAMI M, GANJI D D. Entropy generation of nanofluid in presence of magnetic field using Lattice Boltzmann Method [J]. Physica A 2015, 417: 273–286.

    Article  Google Scholar 

  9. SHEIKHOLESLAMI M, GORJI-BANDPY M, VAJRAVELU K. Lattice Boltzmann simulation of magnetohydrodynamic natural convection heat transfer of Al2O3-water nanofluid in a horizontal cylindrical enclosure with an inner triangular cylinder [J]. International Journal of Heat and Mass Transfer 2015, 80: 16–25.

    Article  Google Scholar 

  10. SHEIKHOLESLAMI M, GANJI D D, YOUNUS JAVED M, ELLAHI R. Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of two phase model [J]. Journal of Magnetism and Magnetic Materials 2015, 374: 36–43.

    Article  Google Scholar 

  11. SHEIKHOLESLAMI M, ABELMAN S, GANJI D D. Numerical simulation of MHD nanofluid flow and heat transfer considering viscous dissipation [J]. International Journal of Heat and Mass Transfer 2014, 79: 212–222.

    Article  Google Scholar 

  12. ZHANG Chao-li, ZHENG Lian-cun, ZHANG Xin-xin, CHEN Gong. MHD flow and radiation heat transfer of nanofluids in porous media with variable surface heat flux and chemical reaction [J]. Applied Mathematical Modelling 2015, 39: 165–181.

    Article  MathSciNet  Google Scholar 

  13. HUSSAIN T, SHEHZAD S A, ALSAEDI A, HAYAT T, RAMZAN M. Flow of Casson nanofluid with viscous dissipation and convective conditions: A mathematical model [J]. Journal of Central South University 2015, 22: 1132–114.

    Article  Google Scholar 

  14. SHEIKHOLESLAMI M, GANJI D D. Ferrohydrodynamic and magnetohydrodynamic effects on ferrofluid flow and convective heat transfer [J]. Energy 2014, 75: 400–410.

    Article  Google Scholar 

  15. SHEIKHOLESLAMI M, GORJI-BANDPY M, GANJI D D. Review of heat transfer enhancement methods: Focus on passive methods using swirl flow devices [J]. Renewable and Sustainable Energy Reviews 2015, 49: 444–469.

    Article  Google Scholar 

  16. SHEIKHOLESLAMI M, RASHIDI M M. Effect of space dependent magnetic field on free convection of Fe3O4-water nanofluid [J]. Journal of the Taiwan Institute of Chemical Engineers, 2015, DOI: 10.1016/j.jtice.2015.03.035.

  17. SHEIKHOLESLAMI M, GORJI BANDPY M, ASHORYNEJAD H R. Lattice Boltzmann method for simulation of magnetic field effect on hydrothermal behavior of nanofluid in a cubic cavity [J]. Physica A: Statistical Mechanics and its Applications 2015, 432: 58–70.

    Article  Google Scholar 

  18. SHEIKHOLESLAMI M, ELLAHI R. Simulation of ferrofluid flow for magnetic drug targeting using Lattice Boltzmann method [J]. Journal of Zeitschrift Fur Naturforschung A 2015, 70(2): 115–124.

    Google Scholar 

  19. ASHORYNEJAD H R, MOHAMAD A A, SHEIKHOLESLAMI M. Magnetic field effects on natural convection flow of a nanofluid in a horizontal cylindrical annulus using Lattice Boltzmann method [J]. International Journal of Thermal Sciences 2013, 64: 240–250.

    Article  Google Scholar 

  20. SHEIKHOLESLAMI M, GORJI-BANDPAY M, GANJI D D. Magnetic field effects on natural convection around a horizontal circular cylinder inside a square enclosure filled with nanofluid [J]. International Communications in Heat and Mass Transfer 2012, 39: 978–986.

    Article  Google Scholar 

  21. SHEIKHOLESLAMI M, HATAMI M, JAFARYAR M, FARKHADNIA F, GANJI D D, GORJI-BANDPY M. Thermal management of double-pipe air to water heat exchanger [J]. Energy and Buildings 2015, 88: 361–366.

    Article  Google Scholar 

  22. SHEIKHOLESLAMI KANDELOUSI M. Effect of spatially variable magnetic field on ferrofluid flow and heat transfer considering constant heat flux boundary condition [J]. The European Physical Journal Plus 2014, 18: 129–248.

    Google Scholar 

  23. SHEIKHOLESLAMI M, GORJI-BANDPY M, GANJI D D. Lattice Boltzmann method for MHD natural convection heat transfer using nanofluid [J]. Powder Technology 2014, 254: 82–93.

    Article  Google Scholar 

  24. RAHMAN M M, ÖZTOP H F, STEELE M, NAIM A G, AL-SALEM K H, IBRAHIM T A. Unsteady natural convection and statistical analysis in a CNT–water filled cavity with non-isothermal heating [J]. International Communications in Heat and Mass Transfer 2015, 64: 50–60.

    Article  Google Scholar 

  25. SHEHZAD S A, HUSSAIN T, HAYAT T, RAMZAN M, ALSAEDI M. Boundary layer flow of third grade nanofluid with Newtonian heating and viscous dissipation [J]. Journal of Central South University 2015, 22: 360–367.

    Article  Google Scholar 

  26. SHEIKHOLESLAMI M, HATAMI M, GANJI D D. Nanofluid flow and heat transfer in a rotating system in the presence of a magnetic field [J]. Journal of Molecular Liquids 2014, 190: 112–120.

    Article  Google Scholar 

  27. SHEIKHOLESLAMI M, GORJI-BANDPY M, GANJI D D. Numerical investigation of MHD effects on Al2O3-water nanofluid flow and heat transfer in a semi-annulus enclosure using LBM [J]. Energy 2013, 60: 501–510.

    Article  Google Scholar 

  28. HATAMI M, GANJI D D. Motion of a spherical particle on a rotating parabola using Lagrangian and high accuracy multi-step differential transformation method [J]. Powder Technology 2014, 258: 94–98.

    Article  Google Scholar 

  29. HAYAT T, NAZ R, ASGHAR S, MESLOU S. Soret–Dufour effects on three-dimensional flow of third grade fluid [J]. Nuclear Engineering and Design 2012, 243: 1–14.

    Article  Google Scholar 

  30. SHEIKHOLESLAMI M, ABELMAN S. Two phase simulation of nanofluid flow and heat transfer in an annulus in the presence of an axial magnetic field [J]. IEEE Transactions on Nanotechnology 2015, 14(3): 561–569.

    Article  Google Scholar 

  31. ZHOU K. Differential transformation and its applications for electrical circuits [M]. Wuhan: Huazhong Univ Press, 1986.

  32. HATAMI M, SHEIKHOLESLAMI M, DOMAIRRY G. High accuracy analysis for motion of a spherical particle in plane couette fluid flow by multi-step differential transformation method [J]. Powder Technology 2014, 260: 59–67.

    Article  Google Scholar 

  33. HATAMI M, GANJI D D. Thermal behavior of longitudinal convective-radiative porous fins with different section shapes and ceramic materials (SiC and Si3N4)[J]. Ceramics International 2014, 40: 6765–6775.

    Article  Google Scholar 

  34. SHEIKHOLESLAMI M, GANJI D D, ASHORYNEJAD H R. Investigation of squeezing unsteady nanofluid flow using ADM [J]. Powder Technology 2013, 239: 259–265.

    Article  Google Scholar 

  35. HATAMI M, GANJI D D. Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis [J]. International Journal of Refrigeration 2014, 40: 140–151.

    Article  Google Scholar 

  36. SHEIKHOLESLAMI M, GANJI D D. Heat transfer of Cu-water nanofluid flow between parallel plates [J]. Powder Technology 2013, 235: 873–879.

    Article  Google Scholar 

  37. MAKINDE OD, OSALUSI E. MHD steady flow with slip in a channel with permeable boundaries [J]. Romanian Journal of Physics 2006, 51(3/4): 293–302.

    Google Scholar 

  38. NIU J, ZHENG L, YANG Y, SHU C H. Chebyshev spectral method for unsteady axisymmetric mixed convection heat transfer of power law fluid over a cylinder with variable transport properties [J]. Int J Numer Anal Model 2014, 11: 525–540.

    MathSciNet  Google Scholar 

  39. SHEIKHOLESLAMI M, RASHIDI M M, AL SAAD D M, FIROUZI F, ROKNI H B, DOMAIRRY G. Steady nanofluid flow between parallel plates considering thermophoresis and Brownian effects [J]. Journal of King Saud University-Science, 2015, doi:10.1016/j.jksus.2015.06.003.

  40. SHEIKHOLESLAMI M, GANJI D D. Nanofluid flow and heat transfer between parallel plates considering Brownian motion using DTM [J]. Comput Methods Appl Mech Engrg 2015, 283: 651–663.

    Article  MathSciNet  Google Scholar 

  41. SHEIKHOLESLAMI M, GANJI D D, RASHIDI M M. Ferrofluid flow and heat transfer in a semi annulus enclosure in the presence of magnetic source considering thermal radiation [J]. Journal of the Taiwan Institute of Chemical Engineers 2015, 47: 6–17.

    Article  Google Scholar 

  42. SHEIKHOLESLAMI M, KANDELOUSI M. KKL correlation for simulation of nanofluid flow and heat transfer in a permeable channel [J]. Physics Letters A 2014, 378(45): 3331–3339.

    Article  MATH  Google Scholar 

  43. ELLAHI R, MUBASHIR BHATTI M, RIAZ A, SHEIKHOLESLAMI M. Effects of magnetohydrodynamics on peristaltic flow of jeffrey fluid in a rectangular duct through a porous medium [J]. Journal of Porous Media 2014, 17(2): 143–157.

    Article  Google Scholar 

  44. HATAMI M, GANJI D D. Motion of a spherical particle in a fluid forced vortex by DQM and DTM [J]. Particuology 2014, 16: 206–212.

    Article  Google Scholar 

  45. SHEIKHOLESLAMI M, GANJI D D. Three dimensional heat and mass transfer in a rotating system using nanofluid [J]. Powder Technology 2014, 253: 789–796.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Mahmoodi or Sh. Kandelousi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoodi, M., Kandelousi, S. Kerosene−alumina nanofluid flow and heat transfer for cooling application. J. Cent. South Univ. 23, 983–990 (2016). https://doi.org/10.1007/s11771-016-3146-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-016-3146-5

Key words

Navigation