Skip to main content
Log in

Effect of graphene on mechanical properties of cement mortars

  • Geological, Civil, Energy and Traffic Engineering
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Functionalized graphene nano-sheets (FGN) of 0.01%−0.05% (mass fraction) were added to produce FGN-cement composites in the form of mortars. Flow properties, mechanical properties and microstructure of the cementitious material were then investigated. The results indicate that the addition of FGN decreases the fluidity slightly and improves mechanical properties of cement-based composites significantly. The highest strength is obtained with FGN content of 0.02% where the flexural strength and compressive strength at 28 days are 12.917 MPa and 52.42 MPa, respectively. Besides, scanning electron micrographs show that FGN can regulate formation of massive compact cross-linking structures and thermo gravimetric analysis indicates that FGN can accelerate the hydration reaction to increase the function of the composite effectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HOUST Y F, BOWEN P, PERCHE F, KAUPPI A, BORGET P, GALMICHEC L, MEINSC J F L, LAFUMAC F, FLATTD R J, SCHOBERD I, BANFILLE P F G, SWIFTE D S, MYRVOLDF B O, PETERSENF B G, REKNESF K. Design and function of novel superplasticizers for more durable high performance concrete (Superplast Project)[J]. Cement and Concrete Research 2008, 38(10): 1197–1209.

    Article  Google Scholar 

  2. van TITTELBOOM K, de BELIE N, LEHMANN F, GROSSE C U. Acoustic emission analysis for the quantification of autonomous crack healing in concrete [J]. Construction and building Materials 2012, 28(1): 333–341.

    Article  Google Scholar 

  3. BENTE D P. Influence of silica fume on diffusivity in cement based materials II: Multi-scale modeling of concrete diffusivity [J]. Cement and Concrete Research 2000, 30: 1121–1129.

    Article  Google Scholar 

  4. BISCHOFF P H. Tension stiffening and cracking of steel fiber-reinforced concrete [J]. Journal of Materials in Civil Engineering 2003, 15(2): 174–182.

    Article  Google Scholar 

  5. LAWLER J S, ZAMPINI D, SHAH S P. Microfiber and macrofiber hybrid fiber reinforced concrete [J]. J Mater Civ Eng, 2005: 17: 595.

    Article  Google Scholar 

  6. LU Chun-hua, CUI Zhao-wei, LIU Rong-gui, LIU Qi-dong. Chloride diffusivity in flexural cracked Portland cement concrete and fly ash concrete beams [J]. Journal of Central South University 2014, 21: 3682–3691.

    Article  Google Scholar 

  7. TOUMEY C P. Rea DING Feynman into nanotechnology [J]. Techné: Research in Philosophy and Technology 2008, 12(3): 133–168.

    Google Scholar 

  8. DREXLER K E. Nanotechnology: From Feynman to fun DING [J]. Bulletin of Science, Technology & Society 2004, 24(1): 21–27.

    Article  Google Scholar 

  9. LI Geng-ying, WANG Pei-ming, ZHAO Xiao-hua. Mechanical behavior and microstructure of cement composites incorporating surface-treated multi-walled carbon nanotubes [J]. Carbon 2005, 43(6): 1239–1245.

    Article  Google Scholar 

  10. LI Yan-hui, WANG Shu-guang, WEI Jin-quan, ZHANG Xian-feng, XU Cai-lu, LUAN Zhao-kun, WU De-hai, WEI Bing-qing. Lead adsorption on carbon nanotubes [J]. Chemical Physics Letters 2002, 357(3): 263–266.

    Article  Google Scholar 

  11. MAHMOUD M E, ALBISHRI H M. Supported hydrophobic ionic liquid on nano-silica for adsorption of lead [J]. Chemical Engineering Journal 2011, 166(1): 157–167.

    Article  Google Scholar 

  12. SHIH J, CHANG T, HSIAO T. Effect of nanosilica on characterization of Portland cement composite [J]. Materials Science and Engineering A 2006, 424(1): 266–274.

    Article  Google Scholar 

  13. RAO Mu-min, SONG Xiang-yun, CAIRNS E J. Nano-carbon/sulfur composite cathode materials with carbon nanofiber as electrical conductor for advanced secondary lithium/sulfur cells [J]. Journal of Power Sources 2012, 205: 474–478.

    Article  Google Scholar 

  14. METAXA Z S, KONSTA-GDOUTOS M S, SHAH S P. Carbon nanofiber-reinforced cement-based materials [J]. Transportation Research Record: Journal of the Transportation Research Board 2010, 2142(1): 114–118.

    Article  Google Scholar 

  15. KORDÁS K, MUSTONEN T, TÓTH G, JANTUNEN H, LAJUNEN M, SOLDANO C, TALAPATRA S, VAJTAI R, AJAYAN P. Inkjet printing of electrically conductive patterns of carbon nanotubes [J]. Small, 2006, 2(8/9): 1021–1025.

    Article  Google Scholar 

  16. GEIM A K, NOVOSELOV K S. The rise of graphene [J]. Nature Materials 2007, 6(3): 183–191.

    Article  Google Scholar 

  17. LEE C, WEI Xiao-ding, KYSAR J W, HONE J. Measurement of the elastic properties and intrinsic strength of monolayer graphene [J]. Science 2008, 321(5887): 385–388.

    Article  Google Scholar 

  18. PANG Huan, CHEN Tao, ZHANG Gang-ming, ZENG Bao-qing, LI Zhong-ming. An electrically conducting polymer/graphene composite with a very low percolation threshold [J]. Materials Letters 2010, 64(20): 2226–2229.

    Article  Google Scholar 

  19. BLANTER Y M, MARTIN I. Transport through normal-metal–graphene contacts [J]. Physical Review B 2007, 76(15): 155433.

    Article  Google Scholar 

  20. WALKER L S, MAROTTO V R, RAFIEE M A, CORRAL E L. Toughening in graphene ceramic composites [J]. Acs Nano 2011, 5(4): 3182–3190.

    Article  Google Scholar 

  21. ALKHATEB H, ALOSTSAZ A, CHENG A H, LI Xiao-bing. Materials genome for graphene-cement nanocomposites [J]. Journal of Nanomechanics and Micromechanics 2013, 3(3): 67–77.

    Article  Google Scholar 

  22. LV Sheng-hua, MA Yu-juan, QIU Chao-chao, JU Hao-bo. Effects of graphene oxide on microstructure of hardened cement paste and its properties [J]. Concrete, 2013(8): 51–54. (in Chinese)

    Google Scholar 

  23. LV Sheng-hua, SUN Ting, LIU Jing-jing, MA Yu-juan, QIU Chao-chao. Toughening effect and mechanism of graphene oxide nanosheets on cement matrix composites [J]. Acta Materiae Compositae Sinica, 2014(3): 644–652. (in Chinese)

    Google Scholar 

  24. ROSCA I D, WATARI F, UO M, AKASAKA T. Oxidation of multiwalled carbon nanotubes by nitric acid [J]. Carbon 2005, 43(15): 3124–3131.

    Article  Google Scholar 

  25. EN N F. Methods of test for cements-Part I: Determination of mechanical resistance [S]. French Standard, 2006. (in French)

    Google Scholar 

  26. LI Hui, XIAO Hui-gang, YUAN Jie, OU Jin-ping. Microstructure of cement mortar with nano-particles [J]. Composites Part B: Engineering 2004, 35(2): 185–189.

    Article  Google Scholar 

  27. NAZARI A, RIAHI S, RIAHI S, SHAMEKHIA F, KHADEMNO A. Mechanical properties of cement mortar with Al2O3 nanoparticles [J]. Journal of American Science 2010, 6(4): 94–97.

    Google Scholar 

  28. CWIRZEN A, HABERMEHLC K, PENTTALA V. Surface decoration of carbon nanotubes and mechanical properties of cement/carbon nanotube composites [J]. Advances in Cement Research 2008, 20(2): 65–73.

    Article  Google Scholar 

  29. LV Sheng-hua, MA Yu-juan, QIU Chao-chao, ZHOU Qing-fang. Regulation of GO on cement hydration crystals and its toughening effect [J]. Magazine of Concrete Research, 2013, 65(19/20): 1246–1254.

    Article  Google Scholar 

  30. ALKHATEB H, ALOSTAZ A, CHENG A H, LI Xiao-bing. Materials genome for graphene-cement nanocomposites [J]. Journal of Nanomechanics and Micromechanics 2013, 3(3): 67–77.

    Article  Google Scholar 

  31. LV Sheng-hua, MA Yu-juan, QIU Chao-chao, SUN Ting, LIU Jing-jing, ZHOU Qing-fang. Effect of graphene oxide nanosheets of microstructure and mechanical properties of cement composites [J]. Construction and building Materials 2013, 49: 121–127.

    Article  Google Scholar 

  32. DWECK J, FERREIRA D S, BÜCHLER P M, CARTLEDGE F. Study by thermogravimetry of the evolution of ettringite phase during type II Portland cement hydration [J]. Journal of Thermal Analysis and Calorimetry 2002, 69(1): 179–186.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-li Cao  (曹明莉).

Additional information

Foundation item: Project(51102035) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Ml., Zhang, Hx. & Zhang, C. Effect of graphene on mechanical properties of cement mortars. J. Cent. South Univ. 23, 919–925 (2016). https://doi.org/10.1007/s11771-016-3139-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-016-3139-4

Key words

Navigation