Skip to main content
Log in

Frictional characteristics of granular system under high pressure

  • Mechanical Engineering, Control Science and Information Engineering
  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In order to reveal the force transmission features of the granules in the solid granule medium forming (SGMF) technology, the frictional characteristics of the non-metallic granule medium (NGM) under high pressure were investigated by tests and simulations. And the relevant changing curves of the internal friction coefficient of the granular system under different normal pressures were obtained by self-designed shear test. By the granule volume compression test, the accurate discrete element simulation parameters were obtained, based on this, the discrete element method (DEM) was adopted to reveal the evolution law of the NGM granules movement in the sample shear process from the microscopic view. Based on the DEM, the influence of granule diameter, surface friction coefficient, normal pressure and shear velocity on the internal friction coefficient of the granular system were studied. And the parameters were conducted to be dimensionless by introducing the inertia coefficient. Finally, the expression showing power-law relationship of inertia coefficient, surface friction coefficient and internal friction coefficient is obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. MIDI G. On dense granular flows [J]. European Physical Journal E, 2004, 14: 341–365.

    Article  Google Scholar 

  2. WINDOWS-YULE C R K, RIVAS N, PARKER D J, THORNTON A R. Low-frequency oscillations and convective phenomena in a density-inverted vibrofluidized granular system [J]. Physical Review E, 2014, 90: 062205.

    Article  Google Scholar 

  3. NEDDERMAN R M. Statics and kinematics of granular materials [M]. Cambridge: Cambridge University Press, 1992: 1–7.

    Book  Google Scholar 

  4. BASSETT D S, OWENS E T, DANIELS K E, PORTER M A. Influence of network topology on sound propagation in granular materials [J]. Physical Review E, 2012, 86: 041306.

    Article  Google Scholar 

  5. SINGH A, MAGNANIMO V, SAITOH K, LUDING S. Effect of cohesion on shear banding in quasistatic granular materials [J]. Physical Review E, 2014, 90: 022202.

    Article  Google Scholar 

  6. CHAUCHAT J, MÉDALE M. A three-dimensional numerical model for dense granular flows based on the μ(I) rheology [J]. Journal of Computational Physics, 2014, 256: 696–712.

    Article  MathSciNet  Google Scholar 

  7. RAJCHENBACH J. Granular flows [J]. Advances in Physics, 2000, 49: 229–256.

    Article  Google Scholar 

  8. HINRICHSEN H, WOLF D. The physics of granular media [M]. Weinheim: Wiley-VCH, 2004: 55.

    Google Scholar 

  9. ZHAO C C, DONG G J, XIAO H, WANG Y S. New process of solid granule medium forming [J]. Journal of Mechanical Engineering, 2009, 45(8): 255–260.

    Article  Google Scholar 

  10. CAO Miao-yan, ZHAO Chang-cai, DONG Guo-jiang. Numerical simulation on granules medium drawing process parameters of magnesium alloy sheet [J]. The Chinese Journal of Nonferrous Metals, 2012, 22(11): 2992–2999. (in Chinese)

    Google Scholar 

  11. GRÜNER M, MERKLEIN M. Numerical simulation of hydro forming at elevated temperatures with granular material used as medium compared to the real part geometry [J]. International Journal of Material Forming, 2010, 3(1): 279–282.

    Article  Google Scholar 

  12. DONG G J, ZHAO C C, CAO M Y. Flexible-die forming process with solid granule medium on sheet metal [J]. Transactions of Nonferrous Metals Society of China, 2013, 23: 2666–2677.

    Article  Google Scholar 

  13. LIU S H, SUN DE'AN, MATSUOKA H. On the interface friction in direct shear test [J]. Computers and Geotechnics, 2005, 32: 317–325.

    Article  Google Scholar 

  14. WANG Z J, JING G Q, YU Q F, YIN H. Analysis of ballast direct shear tests by discrete element method under different normal stress [J]. Measurement, 2015, 63: 17–24.

    Article  Google Scholar 

  15. JIANG Ming-jing, HU Hai-jun. Discrete element numerical simulation on equal-suction tri-axial shear test on dense and loose granular materials [J] Journal of Central South University: Science and Technology, 2010, 41(6): 2350–2359. (in Chinese)

    MathSciNet  Google Scholar 

  16. ZHANG L, WANG Y J, ZHANG J. Force-chain distributions in granular systems [J]. Physical Review E, 2014, 89: 012203.

    Article  Google Scholar 

  17. SINGH A, MAGNANIMO V, SAITOH K, LUDING S. Effect of cohesion on shear banding in quasistatic granular materials [J]. Physical Review E, 2014, 90: 022202.

    Article  Google Scholar 

  18. BARRETO D, O’SULLIVAN C. The influence of inter-particle friction and the intermediate stress ratio on soil response under generalised stress conditions [J]. Granular Matter, 2012, 14: 505–521.

    Article  Google Scholar 

  19. HUANG X, HANLEY K. J, O’SULLIVAN C, KWOK C Y, WADEE M A. DEM analysis of the influence of the intermediate stress ratio on the critical-state behaviour of granular materials [J]. Granular Matter, 2014, 16: 641–655.

    Article  Google Scholar 

  20. CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies [J]. Geotechnique, 1979, 29: 47–65.

    Article  Google Scholar 

  21. ITASCA. PFC2D theory and background manual 1999, Version 2.0.[EB/OL]:http://www.itascacg.com.

  22. JOHNSON K L. Contact mechanics [M]. Cambridge: Cambridge University Press, 1985: 159–180.

    Book  Google Scholar 

  23. SILBERT L E, ERTAS D, GREST G S, HALSEY T C, LEVINE D, PLIMPTON S J. Granular flow down an inclined plane: Bagnold scaling and rheology [J]. Physical Review E, 2001, 64: 051302.

    Article  Google Scholar 

  24. SUN Q C, WANG G Q. Force distribution in static granular matter in two dimenisions [J]. Acta Physica Sinica, 2008, 57(8): 4667–4674.

    Google Scholar 

  25. SCOTT R F. Principles of soil mechanics [M]. Addison Wesley, 1963: 550.

    Google Scholar 

  26. ZENG Y, ZHOU J. Influence of micro parameters of sandy soil on macro properties [J]. Chinese Journal of Underground Space and Engineering, 2008, 4(3): 499–503. (in Chinese)

    Google Scholar 

  27. QIAN Jian-gu, YOU Zi-pei, HUANG Mao-song. Anisotropic characteristics of granular materials under simple shear [J]. Journal of Central South University, 2013, 20: 2275–2284.

    Article  Google Scholar 

  28. CRUZ F D, EMAM S, PROCHNOW M, ROUX J N, CHEVOIR F. Rheophysics of dense granular materials: Discrete simulation of plane shear flows [J]. Physical Review E, 2005, 72: 021309.

    Article  Google Scholar 

  29. LOIS G, LEMATRE A, CARLSON J M. Emergence of multi-contact interactions in contact dynamics simulations of granular shear flows [J]. Europhys Letters, 2006, 76: 318–324.

    Article  Google Scholar 

  30. ABRAHAMSSON P J, SASIC S, RASMUSON A. On the continuum modeling of dense granular flow in high shear granulation [J]. Powder Technology, 2014, 268: 339–346.

    Article  Google Scholar 

  31. LIAO C C, HSIAU S S, CHANG P S. Bottom wall friction coefficients on the dynamic properties of sheared granular flows [J]. Powder Technology, 2015, 270: 348–357.

    Article  Google Scholar 

  32. CHO N, MARTIN C D, SEGO D C. Development of a shear zone in brittle rock subjected to direct shear [J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45: 1335–1346.

    Article  Google Scholar 

  33. HÄRTL J, OOI J Y. Numerical investigation of particle shape and particle friction on limiting bulk friction in direct shear tests and comparison with experiments [J]. Powder Technology, 2011, 212: 231–239.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-cai Zhao  (赵长财).

Additional information

Foundation item: Projects (51305385, 51305386) supported by the National Natural Science Foundation of China; Project (QN20131080) supported by the Science Research Youth Foundation of Hebei Provincial Colleges and Universities, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, My., Peng, Yx., Zhao, Cc. et al. Frictional characteristics of granular system under high pressure. J. Cent. South Univ. 23, 1132–1141 (2016). https://doi.org/10.1007/s11771-016-0363-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-016-0363-x

Key words

Navigation