Skip to main content
Log in

Characteristics and mechanisms of Ni(II) removal from aqueous solution by Chinese loess

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Nickel is a toxic heavy metal among trace elements which has a detrimental impact on living organisms. There is growing need of finding an economic and effective solution for Ni(II) immobilization in environments. Chinese loess was selected as adsorbent to remove Ni(II) from aqueous solution. Adsorbent dosage, reaction time, solute concentration, temperature, and solution pH also have influences on efficiency of Ni(II) removal. The monolayer adsorption capacity of loess towards Ni(II) is determined to be about 15.61 mg/g. High temperature and pH favor the removal of Ni(II) using Chinese loess soil and the optimal dosage of loess is determined to be 10 g/L. The kinetics and adsorption isotherms of the adsorption process can be best-fitted with the pseudo second order kinetics and Langmuir isothermal model, respectively. The thermodynamic analysis reveals that the adsorption process is spontaneous, endothermic and the system disorder increases with duration. Nickel ions can be removed with the removal efficiency of 98.5% at pH greater than or equal to 9.7. Further studies on loess and Ni(II) laden loess (using X-Ray diffraction, Fourier transform infrared spectroscopy) and Ni(II) species distribution at various pH have been conducted to discuss the adsorption mechanism. Loess soils in China have proven to be a potential adsorbent for Ni(II) removal from aqueous solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KADIRVELU K, THAMARAISELVI K, NAMASIVAYAM C. Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from coirpith [J]. Separation and Purification Technology, 2001, 24(3): 497–505.

    Article  Google Scholar 

  2. VIJAYARAGHAVAN K. Biosorption of nickel from synthetic and electroplating industrial solutions using a green marine Algae Ulva reticulate [J]. CLEAN-Soil, Air, Water, 2008, 36(3): 299–305.

    Article  Google Scholar 

  3. WANG X S, REN J J, LU H J, ZHU L, LIU F, ZHANG Q Q, XIE J. Removal of Ni(II) from aqueous solutions by nanoscale magnetite [J]. CLEAN-Soil, Air, Water, 2010, 38(12): 1131–1136.

    Article  Google Scholar 

  4. CHU Guang, ZHAO Si-jia, YANG Tian-zu. Extraction of Nickel from molybdenum leaching residue of metalliferous black shale by segregation roasting and acid leaching [J]. Journal of Central South University, 2012, 19(2): 340–346.

    Article  Google Scholar 

  5. BOUJELBEN N, BOUZID J, ELOUEAR Z. Adsorption of nickel and copper onto natural iron oxide-coated sand from aqueous solutions: Study in single and binary systems [J]. Journal of Hazardous Materials, 2009, 163(1): 376–382.

    Article  Google Scholar 

  6. NAMASIVAYAM C, RANGANATHAN K. Removal of Pb(II), Cd(II) and Ni(II) and mixture of metal ions by adsorption onto waste Fe(III)/Cr(III) hydroxide and fixed bed studies [J]. Environmental Technology, 1995, 16(9): 851–860.

    Google Scholar 

  7. NOURI L, GHODBANE I, HAMDAOUI O, CHIHA M. Batch sorption dynamics and equilibrium for the removal of cadmium ions from aqueous phase using wheat bran [J]. Journal of Hazardous Materials, 2007, 149(1): 115–125.

    Article  Google Scholar 

  8. SHUKLA A, ZHANG Y H, DUBEY P, MARGRAVE J L, SHUKLA S S. The role of sawdust in the removal of unwanted materials from water [J]. Journal of Hazardous Materials B, 2002, 95(1/2): 137–152.

    Article  Google Scholar 

  9. ZHU S J, HOU H B, XUE Y J. Kinetic and isothermal studies of lead ion adsorption onto bentonite [J]. Applied Clay Science, 2008, 40(1/2/3/4): 171–178.

    Article  Google Scholar 

  10. MUSSO T B, PAROLO M E, PETTINARI G, FRANCISCA E M. Cu(II) and Zn(II) adsorption capacity of three different clay liner materials [J]. Journal of Environmental Management, 2014, 146: 50–58.

    Article  Google Scholar 

  11. JULICH D, GATH S. Sorption behavior of copper nanoparticles in soils compared to copper ions [J]. Goederma, 2014, 235: 127–132.

    Article  Google Scholar 

  12. MAHMOUD M E, ABDEL-FATTAH T M, OSMAN M M, AHMED S B. Chemically and biologically modified activated carbon sorbents for the removal of lead ions from aqueous media [J]. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 2012, 47(1): 130–141.

    Article  Google Scholar 

  13. SRIVASTAVA V C, MALL I D, MISHRA I M. Adsorption of toxic metal ions onto activated carbon: Study of sorption behaviour through characterization and kinetics [J]. Chemical Engineering and Process, 2008, 47(8): 1275–1286.

    Article  Google Scholar 

  14. EI-KAMASH A M, ZAKI A A, EI GELEEL M A. Modeling batch kinetics and thermodynamics of zinc and cadmium ions removal from waste solutions using synthetic zeolite A [J]. Journal of Hazardous Materials, 2005, 127(1/2/3): 211–220.

    Article  Google Scholar 

  15. KOCAOBA S, ORHAN Y, AKYUZ T. Kinetics and equilibrium studies of heavy metal ions removal by use of natural zeolite [J]. Desalination, 2007, 214(1/2/3): 1–10.

    Article  Google Scholar 

  16. GRAFE M, EICK M J, GROSSL P R. Adsorption of arsenate(V) and arsenite(III) on goethite in the presence and absence of dissolved organic carbon [J]. Soil Science Society of America Journal, 2001, 65(6): 1680–1687.

    Article  Google Scholar 

  17. ZHU J, HUANG Q Y, PIGNA M. Competitive sorption of Cu and Cr on goethite and goethite-bacteria complex [J]. Chemical Engineering Journal, 2012, 179: 26–32.

    Article  Google Scholar 

  18. OSTERGREN J D, TRAINOR T P, BARGAR J R, BROWN G E, PARKS G A. Inorganic ligand effects on Pb(II) sorption to goethite (a-FeOOH): I. Carbonate [J]. Journal of Colloid and Interface Science, 2000, 225(2): 466–482.

    Article  Google Scholar 

  19. MUSTAFA G, SINGH B, KOOKANA R S. Cadmium adsorption and desorption behaviour on goethite at low equilibrium concentrations: Effects of pH and index cations [J]. Chemosphere, 2004, 57(10): 1325–1333.

    Article  Google Scholar 

  20. ÖZCAN A S, GÖK Ö, ÖZCAN A. Adsorption of lead(II) ions onto 8-hydroxy quinoline-immobilized bentonite [J]. Journal of Hazardous Materials, 2009, 161(1): 499–509.

    Article  Google Scholar 

  21. NASEEM R, TAHIR S S. Removal of Pb(II) from aqueous/acidic solutions by using bentonite as an adsorbent [J]. Water Research, 2001, 35(16): 3982–3986.

    Article  Google Scholar 

  22. ADEBOWALE K O, UNUABONAH I E, OLU-OWOLABI B I. Adsorption of some heavy metal ions on sulfate-and phosphatemodified kaolin [J]. Applied Clay Science, 2005, 29(2): 145–148.

    Article  Google Scholar 

  23. BHATTACHARYYA K G, SEN GUPTA S. Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: A review [J]. Advances in Colloid and Interface Science, 2008, 140(2): 114–131.

    Article  Google Scholar 

  24. BHATTACHARYYA K G, SEN GUPTA S. Kaolinite and montmorillonite as adsorbents for Fe(III), Co(II) and Ni(II) in aqueous medium [J]. Applied Clay Science, 2008, 41(1/2): 1–9.

    Article  Google Scholar 

  25. SEN T K, MAHAJAN S P, KHILAR K C. Adsorption of Cu2+ and Ni2+ on iron oxide and kaolin and its importance on Ni2+ transport in porous media [J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2002, 211(1): 91–102.

    Article  Google Scholar 

  26. BARBIER F, DUC G, PETIT-RAMEL M. Adsorption of lead and cadmium ions from aqueous solution to the montmorillonite/water interface [J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2000, 166(1/2/3): 153–159.

    Article  Google Scholar 

  27. KOZAK O, PRAUS P, MACHOVIC V, KLIKA Z. Adsorption of zinc and copper ions on natural and ethylenediamine modified montmorillonite [J]. Ceramics–Silikaty, 2010, 54(1): 78–84.

    Google Scholar 

  28. LIN S H, JUANG R S. Heavy metal removal from water by sorption using surfactant-modified montmorillonite [J]. Journal of Hazardous Materials, 2002, 92(3): 315–326.

    Article  Google Scholar 

  29. LAKSHTANOV L Z, STIPP S LS. Experimental study of nickel(II) interaction with calcite: Adsorption and coprecipitation [J]. Geochimica et Cosmochimica Acta, 2007, 71(15): 3686–3697.

    Article  Google Scholar 

  30. UYGUR V, RIMMER D L. Reactions of zinc with iron-oxide coated calcite surfaces at alkaline pH [J]. European Journal of Soil Science, 2000, 51(3): 511–516.

    Article  Google Scholar 

  31. CARVALHO W A, VIGNADO C, FONTANA J. Ni(II) removal from aqueous effluents by silylated clays [J]. Journal of Hazardous Materials, 2008, 153(3): 1240–1247.

    Article  Google Scholar 

  32. CHANG P P, WANG X K, YU S M, WU W S. Sorption of Ni(II) on Na-rectorite from aqueous solution: Effect of pH, ionic strength and temperature [J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2007, 302(1/2/3): 75–81.

    Google Scholar 

  33. ECHEVERRIA J, INDURAIN J, CHURIO E, GARRIDO J. Simultaneous effect of pH, temperature, ionic strength, and initial concentration on the retention of Ni on illite [J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2003, 218(1/2/3): 175–187.

    Article  Google Scholar 

  34. TANG X W, LI Z Z, CHEN Y M. Behaviour and mechanism of Zn(II) adsorption on Chinese loess at dilute slurry concentrations [J]. Journal of Chemical Technology and Biotechnology, 2008, 83(5): 673–682.

    Article  Google Scholar 

  35. TANG X W, LI Z Z, CHEN Y M, WANG Y. Removal of Cu(II) from aqueous solution by adsorption on Chinese Quaternary loess: Kinetics and equilibrium studies [J]. Journal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, 2008, 43(7): 779–791.

    Article  Google Scholar 

  36. LI Z Z, TANG X W, CHEN Y M, WANG Y. Sorption behavior and mechanism of Pb(II) on Chinese loess [J]. Journal of Environmental Engineering-ASCE, 2009, 135(1): 58–67.

    Article  Google Scholar 

  37. WANG Y, TANG X W, CHEN Y M, ZHAN L T, LI Z Z, TANG Q. Adsorption behavior and mechanism of Cd(II) on loess soil from China [J]. Journal of Hazardous Materials, 2009, 172(1): 30–37.

    Article  Google Scholar 

  38. HO Y S. Citation review of Lagergren kinetic rate equation on adsorption reactions [J]. Scientometrics, 2004, 59(1): 171–177.

    Article  Google Scholar 

  39. HO Y S, MCKAY G. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents [J]. Process Safety and Environmental Protection, 1998, 76(B4): 332–340.

    Article  Google Scholar 

  40. ZHOU L M, WANG Y P, LIU Z R, HUANG Q W. Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres [J]. Journal of Hazardous Materials, 2009, 161(2/3): 995–1002.

    Article  Google Scholar 

  41. GILES C H, SMITH D A. A general treatment and classification of the solute sorption isotherms. I. Theoretical [J]. Journal of Colloid and Interface Science, 1974, 47(3): 755–765.

    Article  Google Scholar 

  42. DO D D. Adsorption analysis: Equilibrium and kinetics [M]. London: Imperial College Press, 1998: 32–191.

    Google Scholar 

  43. KILISLIOGLU A, BILGIN B. Thermodynamic and kinetic investigations of uranium adsorption on amberlite IR-118H resin [J]. Applied Radiation and Isotopes, 2003, 58(2): 155–160.

    Article  Google Scholar 

  44. ÖZCAN A, ÖNCÜ E M, ÖZCAN A S. Kinetics, isotherm and thermodynamic studies of adsorption of Acid Blue 193 from aqueous solutions onto natural sepiolite [J]. Colloids and Surfaces A-Physicochemical and Engineering Aspects, 2006, 277(1/2/3): 90–97.

    Article  Google Scholar 

  45. MATTIGOD S V, RAI D, FELMY A R, RAO L F. Solubility and solubility product of crystalline Ni(OH)2 [J]. Journal of Solution Chemistry, 1997, 26(4): 391–403.

    Article  Google Scholar 

  46. ROBERTS D R, SCHEIDEGGER A M, SPARKS D L. Kinetics of mixed Ni-Al precipitate formation on a soil clay fraction [J]. Environmental Science and Technology, 1999, 33(21): 3749–3754.

    Article  Google Scholar 

  47. ELZINGA E J, SPARKS D L. Reaction condition effects on nickel sorption mechanisms in illite-water suspensions [J]. Soil Science Society of America Journal, 2001, 65(1): 94–101.

    Article  Google Scholar 

  48. BISWAS M, MASUDA J D, MITRA S. Hydrothermal synthesis, crystal structure and magnetic properties of a new one-dimensional polymer [{Cu(4,4'-bipy)(CH3COO)23H2O]n [J]. Structural Chemistry, 2007, 18(1): 9–13.

    Article  Google Scholar 

  49. SEN G UPTA B, CURRAN M, HASAN S, GHOSH T K. Adsorption characteristics of Cu and Ni on Irish peat moss [J]. Journal of Environmental Management, 2009, 90(2): 954–960.

    Article  Google Scholar 

  50. SCHEIDEGGER A M, LAMBLE G M, SPARKS D L. Investigation of Ni sorption on pyrophyllite: An XAFS study [J]. Environmental Science and Technology, 1996, 30(2): 548–554.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang  (王艳).

Additional information

Foundation item: Projects(51179168, 51308310) supported by the National Natural Science Foundation of China; Project(LQ13E080007) supported by Zhejiang Provincial Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Tang, Xw. & Wang, Hy. Characteristics and mechanisms of Ni(II) removal from aqueous solution by Chinese loess. J. Cent. South Univ. 22, 4184–4192 (2015). https://doi.org/10.1007/s11771-015-2966-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2966-z

Key words

Navigation