Skip to main content
Log in

Dual solutions of MHD stagnation point flow and heat transfer over a stretching/shrinking sheet with generalized slip condition

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

An analysis was made to study the steady momentum and heat transfer characteristics of a viscous electrically conducting fluid near a stagnation point due to a stretching/shrinking sheet in the presence of a transverse magnetic field and generalized slip condition. Two flow problems corresponding to the planar and axisymmetric stretching/shrinking sheet were considered. By means of similarity transformations, the obtained resultant nonlinear ordinary differential equations were solved numerically using a shooting method for dual solutions of velocity and temperature profiles. Some important physical features of the flow and heat transfer in terms of the fluid velocity, the temperature distribution, the skin friction coefficient and the local Nusselt number for various values of the controlling governing parameters like velocity slip parameter, critical shear rate, magnetic field, ratio of stretching/shrinking rate to external flow rate and Prandtl number were analyzed and discussed. An increase of the critical shear rate decreases the fluid velocity whereas the local Nusselt number increases. The comparison of the present numerical results with the existing literature in a limiting case is given and found to be in an excellent agreement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HEIMENZ K. Die grenzschicht an einem in den gleichförmingen flussigkeitsstorm eingetauchten graden Kreiszylinder [J]. Dinglers Polytech J, 1911, 326: 321–324. (in German)

    Google Scholar 

  2. HOMANN F. Der einfluss grosser Zahigkeit bei der stromung um den zylinder and um die kugel [J]. Z Angew Math Mech (ZAMM), 1936, 16: 153–164. (in German)

    Article  MATH  Google Scholar 

  3. CRANE L J. Flow past a stretching plate [J]. J Appl Math Phys (ZAMP), 1970, 21: 645–647.

    Article  Google Scholar 

  4. CHIAM T C. Stagnation point flow towards a stretching plate [J]. J Phys Soc Jpn, 1994, 63: 2443–2444.

    Article  Google Scholar 

  5. MAHAPATRA T R, GUPTA A S. Heat transfer in stagnation-point flow towards a stretching sheet [J]. Heat and Mass Transfer, 2002, 38: 517–521.

    Article  Google Scholar 

  6. MAHAPATRA T R, GUPTA A S. Stagnation-point flow towards a stretching surface [J]. Can J Chem Eng, 2003, 81: 258–263.

    Article  Google Scholar 

  7. ISHAK A, JAFAR K, NAZAR R, POP I. MHD stagnation point flow towards a stretching sheet [J]. Physica A, 2009, 388: 3377–3383.

    Article  Google Scholar 

  8. ALI F M, NAZAR R, ARIFIN N M, POP I. MHD stagnation-point flow and heat transfer towards stretching sheet with inducedmagnetic field [J]. Appl Math Mech, 2011, 32: 409–418.

    Article  MATH  MathSciNet  Google Scholar 

  9. WANG C Y. Flow due to a stretching boundary with partial slip: An exact solution of Navier-Stokes equations [J]. Chemical Eng Sci Acta Mech, 2002, 57: 3745–3747.

    Article  Google Scholar 

  10. WANG C Y. Similarity stagnation point solutions of the Navier-Stokes equations—Review and extension [J]. Eur J Mech B, 2008, 27: 678–683.

    Article  MATH  Google Scholar 

  11. FANG T, ZHANG J, YAO S. Slip MHD viscous flow over a stretching sheet—An exact solution [J]. Cummun Nonlinear Sci Numer Simul, 2009, 14: 3731–3737.

    Article  Google Scholar 

  12. SAJID M, ALI N, ABBAS Z, JAVED T. Stretching flows with general slip boundary condition [J]. Int J Modern Phy B, 2010, 24: 5939–5947.

    Article  MATH  Google Scholar 

  13. JAVED T, ALI N, ABBAS Z, SAJID M. Flow of an Eyring-powell non-Newtonian fluid over a stretching sheet [J]. Chem Eng Comm, 2013, 200: 327–336.

    Article  Google Scholar 

  14. WANG C Y. Liquid film on an unsteady stretching sheet [J]. Quart Appl Math, 1990, 48: 601–610.

    MATH  MathSciNet  Google Scholar 

  15. MIKLAVCIC M, WANG C Y. Viscous flow due to a shrinking sheet [J]. Quart Appl Math, 2006, 64: 283–290.

    Article  MATH  MathSciNet  Google Scholar 

  16. WANG C Y. Stagnation flow towards a shrinking sheet [J]. Int J Nonlinear Mech, 2008, 43: 377–382.

    Article  Google Scholar 

  17. FANG T, ZHANG J. Closed-form exact solutions of MHD viscous flow over a shrinking sheet [J]. Commun Nonlinear Sci Numer Simmul, 2009, 14: 2853–2857.

    Article  MATH  Google Scholar 

  18. JAVED T, ABBAS Z, SAJID M, ALI N. Heat transfer analysis for a hydromagnetic viscous fluid over a non-linear shrinking sheet [J]. Int J Heat and Mass Trans, 2011, 54: 2034–2042.

    Article  MATH  Google Scholar 

  19. ROSALI H, ISHAK A, POP I. Stagnation point flow and heat transfer over a stretching/shrinking sheet in a porous medium [J]. Int Commun Heat and Mass Transfer, 2011, 38: 1029–1032.

    Article  Google Scholar 

  20. MUHAIMIN, KANDASAMY R, HASHIM I. Effect of chemical reaction, heat and mass transfer on nonlinear boundary layer past a porous shrinking sheet in the presence of suction [J]. J Nuclear Engng and Design, 2010, 240: 933–939.

    Article  Google Scholar 

  21. BHATTACHARYYA K. Dual solution in boundary layer stagnation-point flow and mass transfer with chemical reaction past a stretching/shrinking sheet [J]. Int Commun Heat and Mass Transfer 2011, 38: 917–922.

    Article  Google Scholar 

  22. BHATTACHARYYA K, MUKHOPADHYAY S, LAYEK G C, Slip effects on boundary layer stagnation-point flow and heat transfer towards a shrinking sheet [J]. Int J Heat Mass Trans, 2011, 54: 308–313.

    Article  MATH  Google Scholar 

  23. BHATTACHARYYA K, VAJRAVELU K. Stagnation-point flow and heat transfer over an exponentially shrinking sheet [J]. Commu Nonlinear Sci Numer Simul, 2012, 17: 2728–2734.

    Article  Google Scholar 

  24. van GORDER R A, VAJRAVELU K, POP I. Hydromagnetic stagnation point flow of a viscous fluid over a stretching or shrinking sheet [J]. Meccanica, 2012, 47: 31–50.

    Article  MATH  MathSciNet  Google Scholar 

  25. AMAN F, ISHAK A, POP I. Magnetohydrodynamic stagnation-point flow towards a stretching/shrinking sheet with slip effects [J]. Int Commun Heat and Mass Transfer, 2013, 47: 68–72.

    Article  Google Scholar 

  26. LOK Y Y, ISHAK A, POP I. MHD stagnation-point flow towards a shrinking sheet [J]. Int J Numer Meth Heat Fluid Flow, 2011, 21: 61–72.

    Article  Google Scholar 

  27. NANDY S K, MAHAPATRA T R. Effects of slip and heat generation/absorption on MHD stagnation flow of nanofluid past a stretching/shrinking surface with convective boundary conditions [J]. Int J Heat Mass Trans, 2013, 64: 1091–1100.

    Article  Google Scholar 

  28. SINGH G, CHAMKHA A J. Dual solutions for second-order slip flow and heat transfer on a vertical permeable shrinking sheet [J]. Ain Shams Eng J, 2013, 4: 911–917.

    Article  Google Scholar 

  29. ALI F M, NAZAR R, ARIFIN N M, POP I. Dual solutions in MHD flow on a nonlinear porous shrinking sheet in a viscous fluid [J]. Boundary Value Problems, 2013, 2013: 32.

    Article  MathSciNet  Google Scholar 

  30. ROHNI A M, AHMAD A, ISMAIL A I M, POP I. Boundary layer flow and heat transfer over an exponentially shrinking vertical sheet with suction [J]. Int J of Thermal Sci, 2013 64: 264–272.

    Article  Google Scholar 

  31. SALEH S H M, ARIFIN N M, NAZAR R, ALI F M, POP I. Mixed convection stagnation flow towards a vertical shrinking sheet [J]. Int J Heat Mass Trans, 2014, 73: 839–848.

    Article  Google Scholar 

  32. MANSUR S, ISHAK A. The magnetohydrodynamic boundary layer flow of a nanofluid past a stretching/shrinking sheet with slip boundary conditions [J]. J Applied Mathematics, 2014, 2014: Article ID 907152.

    Google Scholar 

  33. RASHIDI M M, GANESH N V, HAKEEM A K A, GANGA B. Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation [J]. J Molecular Liquids, 2014, 198: 234–238.

    Article  Google Scholar 

  34. THOMPSON P A, TROIAN S M. A general boundary condition for liquid flow at solid surfaces [J]. Nature, 1997, 389: 360–362.

    Article  Google Scholar 

  35. MERKIN J H. On dual solutions occurring in mixed convection in a porous medium [J]. J Eng Math, 1985, 20: 171–179.

    Article  MathSciNet  Google Scholar 

  36. WEIDMAN P D, KUBITSCHEK D G, DAVIS A M J. The effect of transpiration on selfsimilar boundary layer flow over moving surfaces [J]. Int J Eng Sci, 2006, 44: 730–737.

    Article  MATH  Google Scholar 

  37. PAULLET J, WEIDMAN P D. Analysis of stagnation point flow towards a stretching sheet [J]. Int J Nonlinear Mech, 2007, 42: 1084–1091.

    Article  MATH  Google Scholar 

  38. HARRIS S D, INGHAM D B, POP I. Mixed convection boundary layer flow near the stagnation point on a vertical surface in a porous medium: Brinkman model with slip [J]. Transp Porous Media, 2009, 77: 267–285.

    Article  Google Scholar 

  39. ISHAK A, LOK Y Y, POP I. Stagnation-point flow over a shrinking sheet in a micropolar fluid [J]. Chem Eng Commun, 2010, 197: 1417–1427.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaheer Abbas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abbas, Z., Masood, T. & Olanrewaju, P.O. Dual solutions of MHD stagnation point flow and heat transfer over a stretching/shrinking sheet with generalized slip condition. J. Cent. South Univ. 22, 2376–2384 (2015). https://doi.org/10.1007/s11771-015-2763-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2763-8

Key words

Navigation