Skip to main content
Log in

A new robust fuzzy method for unmanned flying vehicle control

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A new general robust fuzzy approach was presented to control the position and the attitude of unmanned flying vehicles (UFVs). Control of these vehicles was challenging due to their nonlinear underactuated behaviors. The proposed control system combined great advantages of generalized indirect adaptive sliding mode control (IASMC) and fuzzy control for the UFVs. An on-line adaptive tuning algorithm based on Lyapunov function and Barbalat lemma was designed, thus the stability of the system can be guaranteed. The chattering phenomenon in the sliding mode control was reduced and the steady error was also alleviated. The numerical results, for an underactuated quadcopter and a high speed underwater vehicle as case studies, indicate that the presented adaptive design of fuzzy sliding mode controller performs robustly in the presence of sensor noise and external disturbances. In addition, online unknown parameter estimation of the UFVs, such as ground effect and planing force especially in the cases with the Gaussian sensor noise with zero mean and standard deviation of 0.5 m and 0.1 rad and external disturbances with amplitude of 0.1 m/s2 and frequency of 0.2 Hz, is one of the advantages of this method. These estimated parameters are then used in the controller to improve the trajectory tracking performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. XU Y, MOHSENI K. Bio inspired hydrodynamic force feed forward for autonomous underwater vehicle control [J]. IEEE/ASME Transactions on Mechatronics, 2013, 19(4): 1127–1137.

    Article  Google Scholar 

  2. CASTILLO P, LOZANO R, DZUL A E. Modelling and control of mini-flying machines [M]. Springer, 2005: 252.

    Google Scholar 

  3. ORSAG M, KORPELA C, OH P. Modeling and control of MM-UAV: Mobile manipulating unmanned aerial vehicle [J]. Journal of Intelligent & Robotic Systems, 2013, 69(1/2/3/4): 227–240.

    Article  Google Scholar 

  4. WATSON S A, GREEN P N. Depth control for micro-autonomous underwater vehicles (mAUVs): Simulation and experimentation [J]. International Journal of Advanced Robotic Systems, 2014, 11(3): 1–10.

    Google Scholar 

  5. ERGINER B, ALTUG E. Modeling and PD control of a quadrotor VTOL vehicle [C]// Intelligent Vehicles Symposium. Istanbul, Turkey, 2007: 894–899.

    Google Scholar 

  6. LAI L C, YANG C C, WU C J. Time-optimal control of a hovering quad-rotor helicopter [J]. Journal of Intelligent and Robotic Systems, 2006, 45(2): 115–135.

    Article  Google Scholar 

  7. HOFFMANN G M, WASLANDER S L, TOMLIN C J. Quadrotor helicopter trajectory tracking control [C]// AIAA Guidance, Navigation and Control Conference and Exhibit. Honolulu, Hawaii, 2008: 1–14.

    Google Scholar 

  8. TSENG Y H, CHEN C C, LIN C H, HWANG Y S. Tracking controller design for diving behavior of an unmanned underwater vehicle [J]. Mathematical Problems in Engineering, 2013, 2013: 1–11.

    MathSciNet  Google Scholar 

  9. STEENSON L, TURNOCK S, PHILLIPS A, FURLONG M E, HARRIS C, ROGERS E, WANG L P, BODLES K, EVAN S D W. Model predictive control of a hybrid autonomous underwater vehicle with experimental verification [J]. Proceedings of the Institution of Mechanical Engineers, Part M: Engineering for the Maritime Environment. 2014, 228(2): 166–179.

    Google Scholar 

  10. HUANG H, TANG Q, LI Y, WAN L, PANG Y. Dynamic control and disturbance estimation of 3D path following for the observation class underwater remotely operated vehicle [J]. Advances in Mechanical Engineering. 2013, 2013: 1–17.

    Google Scholar 

  11. AKÇAKAYA H, GOREN S L. Robust control of variable speed autonomous underwater vehicle [J]. Advanced Robotics, 2014, 28(9): 601–614.

    Google Scholar 

  12. BOURQUARDEZ O, MAHONY R, GUENARD N, CHAUMETTE F, HAMEL T, ECK L. Image-based visual servo control of the translation kinematics of a quadrotor aerial vehicle [J]. IEEE Transactions on Robotics, 2009, 25(3): 743–749.

    Article  Google Scholar 

  13. ALTUG E, OSTROWSKI J P, TAYLOR C J. Quadrotor control using dual camera visual feedback [C]// IEEE International Conference on Robotics and Automation. Taipei, Taiwan, 2003: 4294–4299.

    Google Scholar 

  14. CHOI I, BANG H. Adaptive command filtered backstepping tracking controller design for quadrotor unmanned aerial vehicle [J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2012, 226(5): 483–497.

    Article  Google Scholar 

  15. CHEN X J, LI D. Modeling and designing intelligent adaptive sliding mode controller for an eight-rotor MAV [J]. International Journal of Aeronautical and Space Sciences, 2013, 14: 172–182.

    Article  Google Scholar 

  16. HAO Y, YI J, ZHAO D, QIAN D. Robust control using incremental sliding mode for underactuated systems with mismatched uncertainties [C]// American Control Conference. 2008: 532–537.

    Google Scholar 

  17. ADHIKARY N, MAHANTA C. Integral backstepping sliding mode control for underactuated systems: Swing-up and stabilization of the cart-pendulum system [J]. ISA transactions, 2013, 52(6): 870–880.

    Article  Google Scholar 

  18. ZHANG L, JIANG D P, HUANG S L, ZHAO J X. Research on motion control of AUV with hybrid actuators [J]. Applied Mechanics and Materials, 2013, 341: 906–912.

    Article  Google Scholar 

  19. BAI T, HAN Y. Simulation of variable-depth motion control for the high-speed underwater vehicle [J]. Mechatronics and Automatic Control Systems, 2014, 237: 745–753.

    Google Scholar 

  20. MAMDANI E, ASSILIAN S. An experiment in linguistic synthesis with a fuzzy logic controller [J]. International Journal of Human- Computer Studies, 1999, 51(2): 135–147.

    Article  Google Scholar 

  21. ZADEH L A. Fuzzy sets [J]. Information and Control, 1965, 8(3): 338–353.

    Article  MATH  MathSciNet  Google Scholar 

  22. LIU Y J, ZHENG Y Q. Adaptive robust fuzzy control for a class of uncertain chaotic systems [J]. Nonlinear dynamics, 2009, 57(3): 431–439.

    Article  MATH  MathSciNet  Google Scholar 

  23. NIU Y-J, WANG X-Y. A novel adaptive fuzzy sliding-mode controller for uncertain chaotic systems [J]. Nonlinear Dynamics, 2013, 73(3): 1201–1209.

    Article  MathSciNet  Google Scholar 

  24. WANG L X. A course in fuzzy systems [M]. Prentice-Hall, USA, 1999: 424.

    Google Scholar 

  25. WANG L X. Adaptive fuzzy systems and control: Design and stability analysis [M]. Prentice Hall, Upper Saddle River, USA, 1994: 232.

    Google Scholar 

  26. WANG J, RAD A B, CHAN P. Indirect adaptive fuzzy sliding mode control. Part I: Fuzzy switching [J]. Fuzzy Sets and Systems, 2001, 122(1): 21–30.

    MATH  MathSciNet  Google Scholar 

  27. BONVIN D, GROS S, MULLHAUPT P, BUCCIERI D. A two-time-scale control scheme for fast systems [J]. Springer Lecture Notes in Control and Information Sciences Series (LNCIS), 2007, 358(LA-ARTICLE-2006-009): 551–563.

    Google Scholar 

  28. MEASE K, BHARADWAJ S, IRAVANCHY S. Timescale analysis for nonlinear dynamical systems [J]. Journal of Guidance, Control, and Dynamics, 2003, 26(2): 318–330.

    Article  Google Scholar 

  29. RAFFO G V, ORTEGA M G, RUBIO F R. An integral predictive/nonlinear H8 control structure for a quadrotor helicopter [J]. Automatica, 2010, 46(1): 29–39.

    Article  MATH  MathSciNet  Google Scholar 

  30. CHEN M, HUZMEZAN M. A simulation model and H8 loop shaping control of a quad rotor unmanned air vehicle [C]// Proceedings of MS03 Conference. Palm Springs, California, 2003: 320–325.

    Google Scholar 

  31. CHEN M, HUZMEZAN M. A combined MBPC/2 DOF H8 controller for a quad rotor UAV [C]// AIAA Atmospheric Flight Mechanics Conference and Exhibit. Austin, Texas, 2003: 2520–2528.

    Google Scholar 

  32. MOKHTARI A, BENALLEGUE A, DAACHI B. Robust feedback linearization and GH8 controller for a quadrotor unmanned aerial vehicle [J]. Journal of Electrical Engineering, 2006, 57(1): 20–27.

    Google Scholar 

  33. KIM K, HWANG K, KIM H. Study of an adaptive fuzzy algorithm to control a rectangular-shaped unmanned surveillance flying car [J]. Journal of Mechanical Science and Technology, 2013, 27(8): 2477–2486.

    Article  Google Scholar 

  34. MIEN V, KANG H J, SHIN K S. Adaptive fuzzy quasi-continuous high-order sliding mode controller for output feedback tracking control of robot manipulators [J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2014, 228(1): 90–107.

    Google Scholar 

  35. MADANI T, BENALLEGUE A. Backstepping sliding mode control applied to a miniature quadrotor flying robot [C]// 32nd Annual Conference on IEEE Industrial Electronics. Paris, France, 2006: 700–705.

    Google Scholar 

  36. MADANI T, BENALLEGUE A. Sliding mode observer and backstepping control for a quadrotor unmanned aerial vehicles [C]// American Control Conference. New York City, USA, 2007: 5887–5892.

    Google Scholar 

  37. MEGUENNI K, TAHAR M, BENHADRIA M, BESTAOUI Y. Fuzzy integral sliding mode based on backstepping control synthesis for an autonomous helicopter [J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2013, 227(5): 751–765.

    Article  Google Scholar 

  38. DERAFA L, OULDALI A, MADANI T, BENALLEGUE A. Four rotors helicopter yaw and altitude stabilization [C]// World Congress on Engineering. London, 2007: 148–152.

    Google Scholar 

  39. LEE D, KIM H J, SASTRY S. Feedback linearization vs. adaptive sliding mode control for a quadrotor helicopter [J]. International Journal of Control, Automation and Systems, 2009, 7(3): 419–428.

    Article  Google Scholar 

  40. PROUTY R W. Helicopter performance, stability, and control [M]. USA: RE Krieger Pub. Co, 2002: 746.

    Google Scholar 

  41. COZA C, MACNAB C. A new robust adaptive-fuzzy control method applied to quadrotor helicopter stabilization [C]// Fuzzy Information Processing Society. Montreal, Canada, 2006: 454–458.

    Google Scholar 

  42. SHAO Y, MESBAHI M, BALAS G. Planing, switching and supercavitating flight control [C]// AIAA Guidance, Navigation and Control Conference, AIAA. Austin, USA, 2003: 5724–5731.

    Google Scholar 

  43. KURDILA A, LIND R, DZIELSKI J. Dynamics and control of supercavitating vehicles [R]. Minneapolis, USA: Office of Naval Research Supercavitating High Speed Bodies Workshop, 2003.

    Google Scholar 

  44. DZIELSKI J, KURDILA A. A benchmark control problem for supercavitating vehicles and an initial investigation of solutions [J]. Journal of Vibration and Control, 2003, 9(7): 791–804.

    Article  MATH  Google Scholar 

  45. LIN G, BALACHANDRAN B, ABED E. Dynamics and control of supercavitating vehicles [J]. Journal of Dynamic Systems, Measurement, and Control, 2008, 130(2): 021003-1-11.

    Google Scholar 

  46. FAN H, ZHANG Y, WANG X. Longitudinal dynamics modeling and MPC strategy for high-speed supercavitating vehicles [C]// Electric Information and Control Engineering (ICEICE), International Conference on, Wuhan, China, 2011: 5947–5950.

    Google Scholar 

  47. BALAS G, BOKOR J, VANEK B, ARNDT R. Control of high-speed underwater vehicles [M]// Control of Uncertain Systems: Modelling, Approximation, and Design. Berlin Heidelberg: Springer-Verlag, 2006: 25–44.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojtaba Mirzaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzaei, M., Eghtesad, M. & Alishahi, M.M. A new robust fuzzy method for unmanned flying vehicle control. J. Cent. South Univ. 22, 2166–2182 (2015). https://doi.org/10.1007/s11771-015-2741-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2741-1

Keywords

Navigation