Skip to main content
Log in

First-principles investigation on structural and electrochemical properties of NaCoO2 for rechargeable Na-ion batteries

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Na x CoO2 is a commonly used cathode material for sodium ion batteries because of its easy synthesis, high reversible capacity and good cyclability. The structural and electrochemical properties of Na x CoO2 during sodium ion insertion/extraction process are studied based on first principles calculations. The calculation results of crystal structure parameters and average intercalation voltage are in good agreement with experiment data. Through calculation of the geometric structure and charge transfer in charging and discharging processes of Na x CoO2, it is found that the oxygen atom surrounding Co of the CoO6 octahedral screens the coulomb potential produced by sodium vacancy in Na x CoO2, and the charge is removed from the entire Co-O layer instead of the Co atom adjacent to sodium vacancy when sodium ions are extracted from the NaCoO2 lattice. Thus, during the insertion/extraction of sodium ion from NaCoO2, the CoO6 octahedral structure undergoes small lattice distortion, which makes the local structure quite stable and is beneficial to the cycling stability of the material for the application of sodium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KANG K, MENG Y S, BREGER J, GREY C P, CENDER G. Electrodes with high power and high capacity for rechargeable lithium batteries [J]. Science, 2006, 311(5763): 977–980.

    Article  Google Scholar 

  2. ZHANG Xin-guo, HU Guo-rong, PENG Zhong-dong. Preparation and effects of W-doping on electrochemical properties of spinel Li4Ti5O12 as anode material for lithium ion battery [J]. Journal of Central South University, 2013, 21(5): 1151–1155.

    Article  MATH  Google Scholar 

  3. HU Chuan-yue, GUO Jun, LI Si-jun, PEGN Yin-xi. Synthesis and electrochemical performance of Li2Mg(0.15)Mn(0.4)Co(0.45)SiO4/C cathode material for lithium ion batteries [J]. Journal of Central South University, 2012, 20(7): 1791–1795.

    Article  Google Scholar 

  4. FERGUS J W. Recent developments in cathode materials for lithium ion batteries [J]. Journal of Power Sources, 2010, 195(4): 939–954.

    Article  Google Scholar 

  5. SLATER M D, KIM D, LEE E. Sodium-ion batteries [J]. Advanced Functional Materials, 2012, 123(8): 947–958.

    Google Scholar 

  6. ELLIS B L, NAZAR L F. Sodium and sodium-ion energy storage batteries [J]. Current Opinion in Solid State and Materials Science, 2012, 16(4): 168–177.

    Article  Google Scholar 

  7. PAN H, HU Y, CHEN L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage [J]. Energy & Environmental Science, 2013, 6(8): 2338–2360.

    Article  Google Scholar 

  8. XU J, LEE D H, MENG Y S. Recent advances in sodium intercalation positive electrode materials for sodium ion batteries [J]. Functional Materials Letters, 2013, 6(1):1330001.

    Article  Google Scholar 

  9. D’ARIENZO M, RUFFO R, SCOTTI R. Layered Na0.7CoO2: A powerful candidate for viable and high performance Na-batteries [J]. Physical Chemistry Chemical Physics, 2012, 14(17): 5945–5952.

    Article  Google Scholar 

  10. XIA X, DAHN J R. NaCrO2 is a fundamentally safe positiveelectrode material for sodium-ion batteries with liquid electrolytes [J]. Electrochemical and Solid-State Letters, 2012, 15: A1-A4.

  11. VASSILARAS P, MA X, LI X. Electrochemical properties of monoclinic NaNiO2 [J]. Journal of the Electrochemical Society, 2013, 160(2): A207-A211.

    Google Scholar 

  12. BUCHER N, HARTUNG S, GOCHEVA I. Combustion-synthesized sodium manganese (cobalt) oxides as cathodes for sodium ion batteries [J]. Journal of Solid State Electrochemistry, 2013, 17(7): 1923–1929.

    Article  Google Scholar 

  13. YABUUCHI N, YOSHIDA H, KOMABA S. Crystal structures and electrode performance of alpha-NaFeO2 for rechargeable sodium batteries [J]. Electrochemistry, 2012, 80(10): 716–719.

    Article  Google Scholar 

  14. ONG S P, CHEVRIER V L, HAUTIER G. Voltage, stability and diffusion barrier differences between sodium-ion and lithium-ion intercalation materials [J]. Energy & Environmental Science, 2011, 9(4): 3680–3688.

    Article  Google Scholar 

  15. BRACONNIER J J, DELMAS C, FOUASSIER C. Comportement electrochimique des phases NaxCoO2 [J]. Materials Research Bulletin, 1980, 15(12): 1797–1804.

    Article  Google Scholar 

  16. SHACKLETTE L W, JOW T R, TOWNSEND L. Rechargeable electrodes from sodium cobalt bronzes [J]. Journal of the Electrochemical Society, 1988, 135(11): 2669–2674.

    Article  Google Scholar 

  17. XIA X, DAHN J R. A study of the reactivity of de-intercalated P2-NaxCoO2 with non-aqueous solvent and electrolyte by accelerating rate calorimetry [J]. Journal of the Electrochemical Society, 2012, 159(5): A647-A650.

    Google Scholar 

  18. KRESSE G, FURTHMULLER J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set [J]. Physical Review B, 1996, 54(16): 11169–11186.

    Article  Google Scholar 

  19. KRESSE G, JOUBERT D. From ultrasoft pseudopotentials to the projector augmented-wave method [J]. Physical Review B, 1999, 59(3): 1758–1775.

    Article  Google Scholar 

  20. TAKAHASHI Y, GOTOH Y, AKIMOTO J. Single-crystal growth, crystal and electronic structure of NaCoO2 [J]. Journal of Solid State Chemistry, 2003, 172(1): 22–26.

    Article  Google Scholar 

  21. MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Physical Review B, 1976, 13(12): 5188–5192.

    Article  MathSciNet  Google Scholar 

  22. VICIU L, BOS J, ZANDBERGEN H W. Crystal structure and elementary properties of NaxCoO2 (x= 0.32, 0.51, 0.6, 0.75, and 0.92) in the three-layer NaCoO2 family [J]. Physical Review B, 2006, 73(17): 174104–174114.

    Article  Google Scholar 

  23. AYDINOL M K, KOHAN A F, CEDER G. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides [J]. Physical Review B, 1997, 56(3): 1354–1365.

    Article  Google Scholar 

  24. KIKKAWA S, MIYAZAKI S, KOIZUMI M. Electrochemical aspects of the deintercalation of layered AMO2 compounds [J]. Journal of Power Sources, 1985, 14(1): 231–234.

    Article  Google Scholar 

  25. DELMAS C, BRACONNIER J J, FOUASSIER C. Electrochemical intercalation of sodium in NaxCoO2 bronzes [J]. Solid State Ionics, 1981, 3: 165–169.

    Article  Google Scholar 

  26. AYDINOL M K, KOHAN A F, CEDER G. Ab initio calculation of the intercalation voltage of lithium-transition-metal oxide electrodes for rechargeable batteries [J]. Journal of Power Sources, 1997, 68(2): 664–668.

    Article  Google Scholar 

  27. VELIKOKHATNYI O I, CHANG C, KUMTA P N. Phase stability and electronic structure of NaMnO2 [J]. Journal of the Electrochemical Society, 2003, 150(9): A1262-A1266.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-you Wang  (王先友).

Additional information

Foundation item: Project(51472211) supported by the National Natural Science Foundation of China; Project(2012CK1006) supported by Scientific and Technical Achievement Transformation Fund of Hunan Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, Jc., Zhou, G., Pei, Y. et al. First-principles investigation on structural and electrochemical properties of NaCoO2 for rechargeable Na-ion batteries. J. Cent. South Univ. 22, 2036–2042 (2015). https://doi.org/10.1007/s11771-015-2726-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2726-0

Keywords

Navigation