Skip to main content
Log in

Cathodic electrophoretic deposition of α-Fe2O3 coating

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Submicro α-Fe2O3 coatings were formed using electrophoretic deposition (EPD) technique in aqueous media. The zeta potentials of different α-Fe2O3 suspensions with different additives were measured as a function of pH to identify the optimum suspension condition for deposition. Electrophoretic depositions of α-Fe2O3 coatings under different applied electric fields and deposition time were studied and the effects of applied voltages and deposition time on deposition rates and thicknesses were investigated. The particle packing densities of the deposits at various applied voltages and deposition time were also analyzed by a scanning electron microscope (SEM). The results show that crack-free α-Fe2O3 coatings with uniform microstructure and good adherence to the nickel substrates are successfully obtained. Electrophoretic deposited α-Fe2O3 coating from aqueous suspension is a feasible, low-cost and environmental friendly method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZHANG Z, HOSSAIN M F, TAKAHASHI T. Self-assembled hematite (α-Fe2O3) nanotube arrays for photoelectrocatalytic degradation of azo dye under simulated solar light irradiation [J]. Applied Catalysis B: Environmental, 2010, 95(3/4): 423–429.

    Article  Google Scholar 

  2. FELDMANN C. Preparation of nanoscale pigment particles [J]. Advanced Materials, 2001, 13(17): 1301–1303.

    Article  Google Scholar 

  3. BELL A T. The impact of nanoscience on heterogeneous catalysis [J]. Science, 2003, 299: 1688–1691.

    Article  Google Scholar 

  4. JING Z H, WU S H. Preparation and magnetic properties of spherical α-Fe2O3 nanoparticles via a non-aqueous medium [J]. Materials Chemistry and Physics, 2005, 92(2/3): 600–603.

    Article  Google Scholar 

  5. SUN P, WANG W, LIU Y, SUN Y, MA J, LU G. Hydrothermal synthesis of 3D urchin-like α-Fe2O3 nanostructure for gas sensor [J]. Sensors and Actuators B: Chemical, 2012, 173(0): 52–57.

    Article  Google Scholar 

  6. NEGULESCU B, THOMAS L, DUMONT Y, TESSIER M, KELLER N, GUYOT M. Exchange biasing in NiO/NiFe2O4 bilayers [J]. Journal of Magnetism and Magnetic Materials, 2002, 242/245(Part 1): 529–531.

    Article  Google Scholar 

  7. VENZKE S, VAN DOVER R B, PHILLIPS J M, GYORGY E M, SIEGRIST T, CHEN C H, WERDER D, FLEMING R M, FELDER R J, COLEMAN E, OPLIA R. Epitaxial growth and magnetic behavior of NiFe2O4 thin films [J]. Journal of Materials Research, 1996, 11(5): 1187–1198.

    Article  Google Scholar 

  8. CHA H G, KIM C W, KIM Y H, JUNG M H, JI E S, DAS B K, KIM J C, KANG Y S. Preparation and characterization of α-Fe2O3 nanorod-thin film by metal–organic chemical vapor deposition [J]. Thin Solid Films, 2009, 517(5): 1853–1856.

    Article  Google Scholar 

  9. PARK Y J, SOBAHAN K M A, HWANGBO C K. Optical and structural properties of Fe2O3 thin films prepared by ion-beam assisted deposition [J]. Surface and Coatings Technology, 2009, 203(17/18): 2646–2650.

    Article  Google Scholar 

  10. MARUYAMA T, SHINYASHIKI Y. Iron–iron oxide composite thin films prepared by chemical vapor deposition from iron pentacarbonyl [J]. Thin Solid Films, 1998, 333(1/2): 203–206.

    Article  Google Scholar 

  11. DESAI J D, PATHAN H M, MIN S K, JUNG K D, JOO O S. FT-IR, XPS and PEC characterization of spray deposited hematite thin films [J]. Applied Surface Science, 2005, 252(5): 1870–1875.

    Article  Google Scholar 

  12. ZHITOMIRSKY I. Electrophoretic and electrolytic deposition of ceramic coatings on carbon fibers [J]. Journal of the European Ceramic Society, 1998, 18(7): 849–856.

    Article  Google Scholar 

  13. BESRA L, COMPSON C, LIU M. Electrophoretic deposition on non-conducting substrates: The case of YSZ film on NiO–YSZ composite substrates for solid oxide fuel cell application [J]. Journal of Power Sources, 2007, 173(1): 130–136.

    Article  Google Scholar 

  14. PANIGRAHI S, BHATTACHARJEE S, BESRA L, SINGH B P, SINHA S P. Electrophoretic deposition of doped ceria: Effect of solvents on deposition microstructure [J]. Journal of the European Ceramic Society, 2010, 30(5): 1097–1103.

    Article  Google Scholar 

  15. DUSOULIER L, CLOOTS R, VERTRUYEN B, MORENO R, BURGOS-MONTES O, FERRARI B. YBa2Cu3O7-x dispersion in iodine acetone for electrophoretic deposition: Surface charging mechanism in a halogenated organic media [J]. Journal of the European Ceramic Society, 2011, 31(6): 1075–1086.

    Article  Google Scholar 

  16. PFRENGLE A, VON BOTH H, KNITTER R, HAU ELT J. Electrophoretic deposition and sintering of zirconia layers on microstructured steel substrates [J]. Journal of the European Ceramic Society, 2006, 26(13): 2633–2638.

    Article  Google Scholar 

  17. BESRA L, UCHIKOSHI T, SUZUKI TS, SAKKA Y. Application of constant current pulse to suppress bubble incorporation and control deposit morphology during aqueous electrophoretic deposition (EPD)[J]. Journal of the European Ceramic Society, 2009, 29(10): 1837–1845.

    Article  Google Scholar 

  18. TANG F, SAKKA Y, UCHIKOSHI T. Electrophoretic deposition of aqueous nano-sized zinc oxide suspensions on a zinc electrode [J]. Materials Research Bulletin, 2003, 38(2): 207–212.

    Article  Google Scholar 

  19. CH VEZ-VALDEZ A, HERRMANN M, BOCCACCINI A R. Alternating current electrophoretic deposition (EPD) of TiO2 nanoparticles in aqueous suspensions [J]. Journal of Colloid and Interface Science, 2012, 375(1): 102–105.

    Article  Google Scholar 

  20. CORNI I, RYAN M P, BOCCACCINI A R.Electrophoretic deposition: From traditional ceramics to nanotechnology [J]. Journal of the European Ceramic Society, 2008, 28(7): 1353–1367.

    Article  Google Scholar 

  21. CHIBOWSKI S, PASZKIEWICZ M, KRUPA M. Investigation of the influence of the polyvinyl alcohol adsorption on the electrical properties of Al2O3-solution interface, thickness of the adsorption layers of PVA [J]. Powder Technology, 2000, 107(3): 251–255.

    Article  Google Scholar 

  22. SHENG Zhong, WANG Guo Ting. Colloid and surface chemistry [M]. Beijing: Chemical Industry Press; 1991. (in Chinese)

    Google Scholar 

  23. NICHOLSON P S, SARKAR P, HAUNG X. Electrophoretic deposition and its use to synthesize ZrO2/Al2O3 micro-laminate ceramic/ceramic composites [J]. Journal of Materials Science, 1993, 28(23): 6274–6278.

    Article  Google Scholar 

  24. KOURA N, TSUKAMOTO T, SHOJI H, HOTTA T. Preparation of various oxide films by an electrophoretic deposition method: A study of the mechanism [J]. Jpn J Appl Phys, 1995, 34: 1643–1647.

    Article  Google Scholar 

  25. MONDRAG N-CORTEZ P, VARGAS-GUTI RREZ G. Electrophoretic deposition of hydroxyapatite submicron particles at high voltages [J]. Materials Letters, 2004, 58(7/8): 1336–1339.

    Article  Google Scholar 

  26. HAAS-SANTO K, FICHTNER M, SCHUBERT K. Preparation of microstructure compatible porous supports by sol–gel synthesis for catalyst coatings [J]. Applied Catalysis A: General, 2001, 220(1/2): 79–92.

    Article  Google Scholar 

  27. MUNTAZ BEGUM S, RAO M C, APARNA Y, RAO P S, RAVIKUMAR RVSSN. Spectroscopic investigations of Fe3+ doped poly vinyl alcohol (PVA) capped ZnSe nanoparticles [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2012, 98(0): 100–104.

    Article  Google Scholar 

  28. ABDELRAZEK E M, ELASHMAWI I S, LABEEB S. Chitosan filler effects on the experimental characterization, spectroscopic investigation and thermal studies of PVA/PVP blend films [J]. Physica B: Condensed Matter, 2010, 405(8): 2021–2027.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Ma  (马莉).

Additional information

Foundation item: Project(51021063) supported by the National Natural Science Foundation for Innovation Group of China; Project(2012M521540) supported by China Postdoctoral Science Foundation; Project(2013RS4027) supported by the Post Doctoral Scientific Foundation of Hunan Province, China; Project(CSUZC2013023) supported by the Precious Apparatus Open Share Foundation of Central South University, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Chang, T., Li, Xb. et al. Cathodic electrophoretic deposition of α-Fe2O3 coating. J. Cent. South Univ. 22, 2027–2035 (2015). https://doi.org/10.1007/s11771-015-2725-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2725-1

Keywords

Navigation