Skip to main content
Log in

Preparation of diamond/Cu microchannel heat sink by chemical vapor deposition

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A Ti interlayer with thickness about 300 nm was sputtered on Cu microchannels, followed by an ultrasonic seeding with nanodiamond powders. Adherent diamond film with crystalline grains close to thermal equilibrium shape was tightly deposited by hot-filament chemical vapor deposition (HF-CVD). The nucleation and growth of diamond were investigated with micro-Raman spectroscope and field emission scanning electron microscope (FE-SEM) with energy dispersive X-ray detector (EDX). Results show that the nucleation density is found to be up to 1010 cm−2. The enhancement of the nucleation kinetics can be attributed to the nanometer rough Ti interlayer surface. An improved absorption of nanodiamond particles is found, which act as starting points for the diamond nucleation during HF-CVD process. Furthermore, finite element simulation was conducted to understand the thermal management properties of prepared diamond/Cu microchannel heat sink.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TUCKERMAN D B. High-performance heat sinking for VLSI [J]. Electron Device Letters, IEEE, 1981, 2(5): 126–129.

    Article  Google Scholar 

  2. HASSAN I, PHUTTHAVONG P, ABDELGAWAD M. Microchannel heat sinks: An overview of the state-of-the-art [J]. Microscale Thermophysical Engineering, 2004, 8(3): 183–205.

    Article  Google Scholar 

  3. MISSAGGIA L J, WALPOLE J N, LIAU Z L, PHILLIPS R J. Microchannel heat sinks for two-dimensional high-power-density diode laser arrays [J]. Quantum Electronics, IEEE Journal of, 1989, 25(9): 1988–1992.

    Article  Google Scholar 

  4. GOODSON K E, KURABAYASHI K, PEASE R F W. Improved heat sinking for laser-diode arrays using microchannels in CVD diamond [J]. IEEE Transactions on Components, Packaging, and Manufacturing Technology-Part B, 1997, 20(1): 104–109.

    Article  Google Scholar 

  5. LIAO M Y, KOIDE Y. Carbon-based materials: Growth, properties, MEMS/NEMS technologies, and MEM/NEM switches [J]. Critical Reviews in Solid State and Materials Sciences, 2011, 36(2): 66–101.

    Article  Google Scholar 

  6. MAY P W. The new diamond age? [J]. Science, 2008, 319(5869): 1490–1491.

    Article  Google Scholar 

  7. LI C, FENG K C, FEI Y J, YUAN H T, XIONG Y, FENG K. The influence of C-60 as intermediate on the diamond nucleation on copper substrate in HFCVD [J]. Applied Surface Science, 2003, 207(1/2/3/4): 169–175.

    Article  Google Scholar 

  8. CHUANG K L, CHANG L, LU C A. Diamond nucleation on Cu by using MPCVD with a biasing pretreatment [J]. Materials Chemistry and Physics, 2001, 72(2): 176–180.

    Article  Google Scholar 

  9. FAN Q H, PEREIRA E, GRÁCIO J. Diamond deposition on copper: Studies on nucleation, growth, and adhesion behaviours [J]. Journal of Materials Science, 1999, 34(6): 1353–1365.

    Article  Google Scholar 

  10. CONSTANT L, SPEISSER C, NORMAND F L. HFCVD diamond growth on Cu(111): Evidence for carbon phase transformations by in situ AES and XPS [J]. Surface Science, 1997, 387(1/2/3): 28–43.

    Article  Google Scholar 

  11. LIU X, WEI Q, Z. U Z, YANG T, ZHAI H. Adherent diamond film deposited on Cu substrate by carbon transport from nanodiamond buried under Pt interlayer [J]. Applied Surface Science, 2013, 265(0): 714–719.

    Article  Google Scholar 

  12. LIU X Z, YU T, WEI Q P, YU Z M, XU X X. Enhanced diamond nucleation on copper substrates by employing an electrostatic self-assembly seeding process with modified nanodiamond particles [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2012, 412(0): 82–89.

    Article  Google Scholar 

  13. HOUŠKA J, PANYALA N R, PEŇA-MÉNDEZ E M, HAVEL J. Mass spectrometry of nanodiamonds [J]. Rapid Communications in Mass Spectrometry, 2009, 23(8): 1125–1131.

    Article  Google Scholar 

  14. YU Z M, LIU X Z, WEI Q P, YANG T M, ZHAI H, TIANG M K. Nanocrystalline diamond matrix deposited on copper substrate by radical species restricted diffusion [J]. Journal of Nanoscience and Nanotechnology, 2013, 13(7): 6910–6916.

    Article  Google Scholar 

  15. BUIJNSTERS J G, VAZQUEZ L, VAN DREUMEL G W G, CELIS J P. Enhancement of the nucleation of smooth and dense nanocrystalline diamond films by using molybdenum seed layers [J]. Journal of Applied Physics, 2010, 108(10): 103514–103519.

    Article  Google Scholar 

  16. CONSTANT L, NORMAND F L. HFCVD diamond nucleation and growth on polycrystalline copper: A kinetic study [J]. Thin Solid Films, 2008, 516(5): 691–695.

    Article  Google Scholar 

  17. LEE S T, LIN Z, JIANG X. CVD diamond films: Nucleation and growth [J]. Materials Science and Engineering R: Reports, 1999, 25(4): 123–154.

    Article  Google Scholar 

  18. GUO L, CHEN G. High-quality diamond film deposition on a titanium substrate using the hot-filament chemical vapor deposition method [J]. Diamond and Related Materials, 2007, 16(8): 1530–1540.

    Article  Google Scholar 

  19. LUX B, HAUBNER R. Diamond deposition on cutting tools [J]. Ceramics International, 1996, 22(4): 347–351.

    Article  Google Scholar 

  20. NORMAND F L, CONSTANT L, EHRET G, SPEISSER C. Generation of carbon tripods on copper by chemical vapor deposition [J]. Journal of Materials Research, 1999, 14(2): 560–564.

    Article  Google Scholar 

  21. NORMAND F L, CONSTANT L, EHRET G, ROMEO M, CHARAI A, SAIKALY W, SPEISSER C. Investigation of carbon aggregates (onions) formed on copper under the conditions of diamond chemical vapour deposition [J]. Philosophical Magazine A-Physics of Condensed Matter Structure Defects and Mechanical Properties, 1999, 79(7): 1739–1756.

    Google Scholar 

  22. IIJIMA S, AIKAWA Y, BABA BAHA Y K. Early formation of chemical vapor deposition diamond films [J]. Applied Physics Letters, 1990, 57(25): 2646–2648.

    Article  Google Scholar 

  23. BULLARD D, LYNCH D. Reduction of titanium dioxide in a nonequilibrium hydrogen plasma [J]. Metallurgical and Materials Transactions B, 1997, 28(6): 1069–1080.

    Article  Google Scholar 

  24. FERRARI A C, ROBERTSON J. Origin of the 1150 cm-1 Raman mode in nanocrystalline diamond [J]. Physical Review B, 2001, 63(12)

    Google Scholar 

  25. KNIGHT D S. Characterization of diamond films by Raman spectroscopy [J]. Journal of Materials Research, 1989, 4: 385–393.

    Article  Google Scholar 

  26. KONIECZNY M. Processing and microstructural characterisation of laminated Ti-intermetallic composites synthesised using Ti and Cu foils [J]. Materials Letters, 2008, 62(17/18): 2600–2602.

    Article  Google Scholar 

  27. DENATALE J F, FLINTOFF J F, HARKER A B. Adhesion improvement in diamond films by microlithographic patterning [J]. Journal of Materials Science, 1992, 27(2): 553–556.

    Article  Google Scholar 

  28. HARTSELL M L, PIANO L S. Growth of diamond films on copper [J]. Journal of Materials Research, 1994, 9: 921–926.

    Article  Google Scholar 

  29. CHEN Y J, YONG T F. Thermal stress and heat transfer characteristics of a Cu/diamond/Cu heat spreading device [J]. Diamond and Related Materials, 2009, 18(2/3): 283–286.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-ming Yu  (余志明).

Additional information

Foundation item: Project(21271188) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Xz., Luo, H., Su, X. et al. Preparation of diamond/Cu microchannel heat sink by chemical vapor deposition. J. Cent. South Univ. 22, 835–841 (2015). https://doi.org/10.1007/s11771-015-2590-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2590-y

Key words

Navigation