Skip to main content
Log in

Processing map and hot working mechanisms of Cu-Ag alloy in hot compression process

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

For Gu-Ag alloy, an important parameter called workability in the forming process of materials can be evaluated by processing maps yielded from the stress-strain data generated by hot compression tests at temperatures of 700–850 °C and strain rates of 0.01–10 s−1. And at the true strain of 0.15, 0.35 and 0.55, respectively, the responses of strain-rate sensitivity, power dissipation efficiency and instability parameter to temperature and strain rate were studied. Instability maps and power dissipation maps were superimposed to form processing maps, which reveal the determinate regions where individual metallurgical processes occur and the limiting conditions of flow instability regions. Furthermore, the optimal processing parameters for bulk metal working are identified clearly by the processing maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. TIAN Y Z, ZHANG Z F. Microstructures and tensile deformation behavior of Cu-16%Ag binary alloy [J]. Materials Science and Engineering A, 2009, 508: 209–213.

    Article  Google Scholar 

  2. FREUDENBERGER J, GRUNBERGER W, BOTCHAROVA E, GAGANOV A, SCHULTZ L. Mechanical properties of Cu-based micro- and macrocomposites [J]. Advanced Engineering Materials, 2002, 4(9): 677–681.

    Article  Google Scholar 

  3. ZHOU Z M, GAO J, LI F, WANG Y P, KOLBE M. Experimental determination and thermodynamic modeling of phase equilibria in the Cu-Cr system [J]. Journal of Materials Science, 2011, 46: 7039–7045.

    Article  Google Scholar 

  4. WANG Z Q, ZHONG Y B, CAO G H, WANG C, WANG J, REN W L, LEI Z S, REN Z M. Influence of dc electric current on the hardness of thermally aged Cu-Cr-Zr alloy [J]. Journal of Alloys and Compounds, 2009, 479(1/2): 303–306.

    Article  Google Scholar 

  5. BADAWY W A, ISMAIL K M, FATHI A M. The influence of the copper/nickel ratio on the electrochemical behavior of Cu-Ni alloys in acidic sulfate solutions [J]. Journal of Alloys and Compounds, 2009, 484(1/2): 365–370.

    Article  Google Scholar 

  6. LEI R S, WANG M P, LI Z, WEI H G, YANG W C, JIA Y L, GONG S. Structure evolution and solid solubility extension of copper-niobium powders during mechanical alloying [J]. Materials Science and Engineering A, 2011, 528: 4475–4481.

    Article  Google Scholar 

  7. BENGHALEM A, MORRIS D G. Microstructure and strength of wire-drawn Cu-Ag filamentary composites [J]. Acta Materialia, 1997, 45: 397–406.

    Article  Google Scholar 

  8. TIAN Y Z, LI J J, ZHANG P, WU S D, ZHANG Z F, KAWASAKI M, LANGDON T G. Microstructures, strengthening mechanisms and fracture behavior of Cu-Ag alloys processed by high-pressure torsion [J]. Acta Materialia, 2012, 60(1): 269–281.

    Article  Google Scholar 

  9. SRINIVASAN N, PRASAD Y V R K, RAMA R P. Hot deformation behaviour of Mg-3Al alloy-A study using processing map [J]. Materials Science and Engineering A, 2008, 476(1/2): 146–156.

    Article  Google Scholar 

  10. PRASAD Y V R K, RAO K P. Processing maps for hot deformation of rolled AZ31 magnesium alloy plate: Anisotropy of hot workability [J]. Materials Science and Engineering A, 2008, 487(1): 316–327.

    Article  Google Scholar 

  11. PRASAD Y V R K, RAO K P. Processing maps and rate controlling mechanisms of hot deformation of electrolytic tough pitch copper in the temperature range 300–950 °C [J]. Materials Science and Engineering A, 2005, 391(1): 141–150.

    Article  Google Scholar 

  12. PRASAD Y V R K, GELEL H L, DORAIVELU S M, MALAS J C. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6264 [J]. Metallurgical and Materials Transactions A, 1984, 15(10): 1883–1892.

    Article  Google Scholar 

  13. GANESAN G, RAGHUKANDAN K, KARTHIKEYAN R, PAI B C. Development of processing map for Al/15%SiCp through neural networks [J]. Journal of Material Processing Technology, 2005, 166, 423–429.

    Article  Google Scholar 

  14. CHAKRAVARTTY J K, CHIRADEEP G. Hot working of zirconium alloys: Some recent developments [J]. Mineral Processing and Extractive Metallurgy Review, 2001, 22(1): 197–220.

    Article  Google Scholar 

  15. RAVI R, PRASAD Y V R K., SARMA V V S. Development of expert systems for the design of a hot-forging process based on material workability [J]. Journal of Materials Engineering and Performance, 2003, 12: 638–645.

    Article  Google Scholar 

  16. RAO K P, PRASAD Y V R K. Processing map and hot working mechanisms in a P/M TiAl alloy composite with in situ carbide and silicide dispersions [J]. Materials Science and Engineering A, 2010, 527(24/25): 6589–6595.

    Article  Google Scholar 

  17. BAEK Hyun Moo, JIN Young Gwan, HWANG Sun Kwang, IM Yong-Taek, SON I-heon, LEE Duk-lak. Numerical study on the evolution of surface defects in wire drawing [J]. Journal of Materials Processing Technology, 2012, 212(4): 776–785.

    Article  Google Scholar 

  18. ZIEGLER H. Some extremum principles in irreversible thermodynamics, with applications to continuum mechanics [J]. Progress in Solid Mechanics, 1963, 4: 91–193.

    Google Scholar 

  19. MIRZADEH H, NAJAFIZADEH A. Prediction of the critical conditions for initiation of dynamic recrystallization [J]. Materials and Design, 2010, 31(3): 1174–1179.

    Article  Google Scholar 

  20. ZENG Z Y, CHEN L Q, ZHU F X, LIU X H. Dynamic recrystallization behavior of a heat-resistant martensitic stainless steel 403Nb during hot deformation [J]. Journal of Materials Science and Technology, 2011, 7(10): 913–919.

    Article  Google Scholar 

  21. TAYLOR A S, HODGSON P D. Dynamic behaviour of 304 stainless steel during high Z deformation [J]. Materials Science and Engineering A, 2011, 528: 3310–3320.

    Article  Google Scholar 

  22. DALLA TORRE F H, DAVIES C H J, PERELOMA E V. Strain hardening behaviour and deformation kinetics of Cu deformed by equal channel angular extrusion from 1 to 16 passes [J]. Acta Materialia, 2006, 54(4): 1135–1146.

    Article  Google Scholar 

  23. YAO X X, ZAJAC S, HUTCHINSON B. The strain-rate sensitivity of flow stress and work-hardening rate in a hot deformed Al-1.0Mg alloy [J]. Journal of Materials Science Letters, 2000, 19(9): 743–744.

    Article  Google Scholar 

  24. ANBUSELVAN S, RAMANATHAN S. Hot deformation and processing maps of extruded ZE41A magnesium alloy [J]. Materials and Design, 2010, 31: 2319–2323.

    Article  Google Scholar 

  25. GANESAN G, RAGHUKANDAN K, KARTHIKEYAN R, PAI B C. Development of processing maps for 6061 Al/15% SiCp composite material [J]. Materials Science and Engineering A, 2004, 69(3): 230–235.

    Article  Google Scholar 

  26. JAGAN REDDY G, SRINIVASAN N, GOKHALE A A, KASHYAP B P. Characterization of dynamic recovery during hot deformation of spray cast Al-Li alloy UL40 alloy [J]. Journal of Materials Science and Technology, 2008, 24(6): 725–733.

    Article  Google Scholar 

  27. RAMANATHAN S, KARTHIKEYAN R, GANASEN G. Development of processing maps for 2124Al/SiCp composites [J]. Materials Science and Engineering A, 2006, 441: 321–332.

    Article  Google Scholar 

  28. MOMENI A, DEHGHANI K. Characterization of hot deformation behavior of 410 martensitic stainless steel using constitutive equations and processing maps [J]. Materials Science and Engineering A, 2010, 527: 5467–5473.

    Article  Google Scholar 

  29. PADMAVARDHANI D, PRASAD Y V R K. Characterization of hot deformation behavior of brasses using processing maps: Part I. α brasss [J]. Metallurgical and Materials Transactions A, 1991, 22A(12): 2985–2992.

    Article  Google Scholar 

  30. CHAKRAVARTTY J K, CHIRADEEP G U P T A. Hot working of zirconium alloys: Some recent developments [J]. Mineral Processing and Extractive Metallurgy Review, 2001, 22(1): 197–220.

    Article  Google Scholar 

  31. QUAN G Z, KU T W, SONG W J, KANG B S. The workability evaluation of wrought AZ80 magnesium alloy in hot compression [J]. Mater and Design, 2011, 32(4): 2462–2468.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meng-han Wang  (王梦寒).

Additional information

Foundation item: Project(CSTC2009BA4065) supported by the Chongqing Natural Science Foundation, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Mh., Huang, L., Chen, Ml. et al. Processing map and hot working mechanisms of Cu-Ag alloy in hot compression process. J. Cent. South Univ. 22, 821–828 (2015). https://doi.org/10.1007/s11771-015-2588-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2588-5

Key words

Navigation