Skip to main content
Log in

Corrosion behavior of 907 steel under thin electrolyte layers of artificial seawater

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The corrosion behavior of 907 steel under thin electrolyte layer (TEL) has been investigated by means of cathodic polarization curve measurement, electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM). The results show that the cathodic diffusion current density presents the variation trend of initial increase and subsequent decrease with the decrease of TEL thickness, and the maximum deposits at 58 μm. The cotangent-hyperbolic impedance (O) is rationally first introduced to study the diffusion process of the reactants through the corrosion products layer with many permeable holes. The initial corrosion rate of 907 steel under different TEL thickness increases with the decrease of TEL thickness except that of 104 μm, whereas the corrosion rate after long time corrosion can be ranked as 104 μm>402 μm>198 μm>301 μm >bulk solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. KATAYAMA H. NODA K, MASUDA H, NAGASAWA M, ITAGAKI M, WATANABE K. Corrosion simulation of carbon steels in atmospheric environment [J]. Corrosion Science, 2005, 47(10): 2599–2606.

    Article  Google Scholar 

  2. HAN Wei, YU Guo-cai, WANG Zhen-yao, WANG Jun. Characterisation of initial atmospheric corrosion carbon steels by field exposure and laboratory simulation [J]. Corrosion Science, 2007, 49(7): 2920–2935.

    Article  Google Scholar 

  3. ABREU C M, CRISTÓBAL M J, NPÓVOA X R, PENA G, PÉREZ M C. Electrochemical behaviour of an AISI 304L stainless steel implanted with nitrogen [J]. Electrochimica Acta, 2008, 53(20): 6000–6007.

    Article  Google Scholar 

  4. XU Jian, WU Xin-qiang, HAN E-H. The evolution of electrochemical behaviour and oxide film properties of 304 stainless steel in high temperature aqueous environment [J]. Electrochimica Acta, 2012, 71: 219–226.

    Article  Google Scholar 

  5. OH S J, COOK D C, TOWNSEND H E. Atmospheric corrosion of different steels in marine, rural and industrial environments [J]. Corrosion Science, 1999, 41(9): 1687–1702.

    Article  Google Scholar 

  6. HOU W, LIANG C. Eight-year atmospheric corrosion exposure of steels in China [J]. Corrosion, 1999, 55(1): 65–73.

    Article  MathSciNet  Google Scholar 

  7. MANSFELD F, TSAI S. Laboratory studies of atmospheric corrosion-I. Weight loss and electrochemical measurements [J]. Corrosion Science, 1980, 20(7): 853–872.

    Article  Google Scholar 

  8. MANSFELD F. Atmospheric corrosion rates, time-of-wetness and relative humidity [J]. Materials and Corrosion, 1979, 30(1): 38–42.

    Article  Google Scholar 

  9. STRATMANN M, STRECKEL H. On the atmospheric corrosion of metals which are covered with thin electrolyte layers-I. Verification of the experimental technique [J]. Corrosion Science, 1990, 30(6/7): 681–696.

    Article  Google Scholar 

  10. STRATMANN M, STRECKEL H. On the atmospheric corrosion of metals which are covered with thin electrolyte layers-II. Experimental results [J]. Corrosion Science, 1990, 30(6/7): 697–714.

    Article  Google Scholar 

  11. STRATMANN M, STRECKEL H, KIM K T, CROCKETT S. On the atmospheric corrosion of metals which are covered with thin electrolyte layers-III. The measurement of polarisation curves on metal surfaces which are covered by thin electrolyte layers [J]. Corrosion Science, 1990, 30(6/7): 715–734.

    Article  Google Scholar 

  12. COX A, LYON S B. An electrochemical study of the atmospheric corrosion of mild steel-I. Experimental method [J]. Corrosion Science, 1994, 36(7): 1167–1176.

    Article  Google Scholar 

  13. NISHIKATA A, ICHIHARA Y, TSURU T. An application of electrochemical impedance spectroscopy to atmospheric corrosion study [J]. Corrosion Science, 1995, 37(6): 897–911.

    Article  Google Scholar 

  14. FRANKEL G S, STRATMANN M, ROHWERDER M, MICHALIK A, MAIER B, DORA J, WICINSKI M. Potential control under thin aqueous layers using a Kelvin Probe [J]. Corrosion Science, 2007, 49(4): 2021–2036.

    Article  Google Scholar 

  15. CHENG Ying-liang, ZHANG Zhao, CAO Fa-he, LI Jin-feng, ZHANG Jian-qing, WANG Jian-min, CAO Chu-nan. A study of the corrosion of aluminum alloy 2024-T3 under thin electrolyte layers [J]. Corrosion Science, 2004, 46(7): 1649–1667.

    Article  Google Scholar 

  16. LIU Wen-juan, CAO Fa-he, CHEN An-na, CHANG Lin-rong, ZHANG Jian-qing, CAO Chu-nan. Corrosion behaviour of AM60 magnesium alloys containing Ce or La under thin electrolyte layers. Part 1: Microstructural characterization and electrochemical behaviour [J]. Corrosion Science, 2010, 52(2): 627–638.

    Article  Google Scholar 

  17. LIAO Xiao-ning, CAO Fa-he, ZHENG Li-yun, LIU Wen-juan, CHEN An-na, ZHANG Jian-qing, CAO Chu-nan. Corrosion behaviour of copper under chloride-containing thin electrolyte layer [J]. Corrosion Science, 2011, 53(10): 3289–3298.

    Article  Google Scholar 

  18. ZHANG Tao, CHEN Chong-mu, SHAO Ya-wei, MENG Guo-zhe, WANG Fu-hui, LI Xiao-gang, DONG Chao-fang. Corrosion of pure magnesium under thin electrolyte layers [J]. Electrochimica Acta, 2008, 53(27): 7921–7931.

    Article  Google Scholar 

  19. ZHOU H R, LI X G, MA J, DONG C F, HUANG Y Z. Dependence of the corrosion behavior of aluminum alloy 7075 on the thin electrolyte layers [J]. Materials Science and Engineering B, 2009, 162(1): 1–8.

    Article  Google Scholar 

  20. ZHENG Li-yun, CAO Fa-he, LIU Wen-juan, JIA Bing-li, ZHANG Jian-qing. Corrosion behavior of Pure zinc and its alloy under thin electrolyte layer [J]. Acta Metallurgica Sinica (English Letters), 2010, 23(6): 416–430.

    Google Scholar 

  21. HUANG Hua-liang, DONG Ze-hua, CHEN Zhen-yu, GUO Xing-peng. The effects of Cl ion concentration and relative humidity on atmospheric corrosion behaviour of PCB-Cu under adsorbed thin electrolyte layer [J]. Corrosion Science, 2011, 53(4): 1230–1236.

    Article  Google Scholar 

  22. SINGH D D N, YADAV S, SAHA J K. Role of climatic conditions on corrosion characteristics of structural steels [J]. Corrosion Science, 2008, 50(1): 93–110.

    Article  Google Scholar 

  23. MA Yuan-tai, LI Ying, WANG Fu-hui. Corrosion of low carbon steel in atmospheric environments of different chloride content [J]. Corrosion Science, 2009, 51(5): 997–1006.

    Article  MathSciNet  Google Scholar 

  24. CASTAÑO J G, BOTERO C A, RESTREPO A H, AGUDELO E A, CORREA E, ECHEVERRÍA F. Atmospheric corrosion of carbon steel in Colombia [J]. Corrosion Science, 2010, 52(1): 216–223.

    Article  Google Scholar 

  25. SYED S. Atmospheric corrosion of carbon steel at marine sites in saudi arabia [J]. Materials and Corrosion, 2010, 61(3): 238–244.

    Article  Google Scholar 

  26. WANG Zhi-feng, LIU Jian-rong, WU Li-xin, HAN Rong-dong, SUN Yi-qiang. Study of the corrosion behavior of weathering steels in atmospheric environments [J]. Corrosion Science, 2013, 67: 1–10.

    Article  Google Scholar 

  27. CRUZ R P V, NISHIKATA A, TSURU T. AC impedance monitoring of pitting corrosion of stainless steel under a wet-dry cyclic condition in chloride-dontaining environment [J]. Corrosion Science, 1996, 38(8): 1397–1406.

    Article  Google Scholar 

  28. NISHIKATA A, YAMASHITA Y, KATAYAMA H, TSURU T, USAMI A, TANABE K, MABUCHI H. An electrochemical impedance study on atmospheric corrosion of steels in a cyclic wet-dry condition [J]. Corrosion Science, 1995, 37(12): 2059–2069.

    Article  Google Scholar 

  29. NISHIKATA A, ICHIHARA Y, TSURU T. Electrochemical impedance spectroscopy of metals covered with a thin electrolyte layer [J]. Electrochimica Acta, 1996, 41(7/8): 1057–1062.

    Article  Google Scholar 

  30. NISHIKATA A, ICHIHARA Y, HAYASHI Y, TSURU T. Influence of electrolyte layer thickness and pH on the initial stage of the atmospheric corrosion of iron [J]. Journal of the Electrochemical Society, 1997, 144(4): 1244–1252.

    Article  Google Scholar 

  31. CHUNG K-W, KIM K-B. A study of the effect of concentration build-up of electrolyte on the atmosphericcorrosion of carbonsteel during drying [J]. Corrosion Science, 2000, 42(3): 517–531.

    Article  Google Scholar 

  32. DUBUISSON E, LAVIE P, DALARD F, CAIRE J-P, SZUNERITS S. Study of the atmospheric corrosion of galvanised steel in a micrometric electrolytic droplet [J]. Electrochemistry Communications, 2006, 8(6): 911–915.

    Article  Google Scholar 

  33. HUANG Hua-liang, GUO Xing-peng, ZHANG Guo-an, DONG Ze-hua. The effects of temperature and electric field on atmospheric corrosion behaviour of PCB-Cu under absorbed thin electrolyte layer [J]. Corrosion Science, 2011, 53(5): 1700–1707.

    Article  Google Scholar 

  34. CAO Chu-nan. Estimation of electrochemical kinetic parameters of corrosion processes by weak polarization curve fitting [J]. Journal of Chinese Society for Corrosion and Protection, 1985, 5(3): 155–164.

    Google Scholar 

  35. GUO He-tong, TAN Qi-xian. study of the electrochemistry [M]. Tianjin: Tianjin University Press, 2000: 225. (in Chinese)

    Google Scholar 

  36. CAMPESTRINI P, WESTING E P M, WIT J H W. Influence of surface preparation on performance of chromate conversion coatings on Alclad 2024 aluminium alloy. Part II: EIS investigation [J]. Electrochimica Acta, 2001, 46(17): 2631–2647.

    Article  Google Scholar 

  37. LIU C, BI Q, LEYLAND A, MATTHEWS A. An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution. Part II: EIS interpretation of corrosion behaviour [J]. Corrosion Science, 2003, 45(6): 1257–1273.

    Article  Google Scholar 

  38. SHAO Hai-bo. Electrochemical behavior and inhibitors of aluminum in alkaline solutions [D]. Hangzhou: Zhejiang University, 2004. (in Chinese)

    Google Scholar 

  39. EI-MAHDY G A, NISHIKATA A, TSURU T. AC impedance study on corrosion of 55%Al-Zn alloy-coated steel under thin electrolyte layers [J]. Corrosion Science, 2000, 42(9): 1509–1521.

    Article  Google Scholar 

  40. LORENZ W J, MANSFELD F. Determination of corrosion rates by electrochemical DC and AC methods [J]. Corrosion Science, 1981, 21(9/10): 647–672.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao Zhang  (张昭).

Additional information

Foundation item: Projects(21073162, 21273199) supported by the National Natural Science Foundation of China; Project(GCTKF2012013) supported by the Science and Technology Bureau of Jiaxing Municipality and the State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Hp., Ding, Sc., Zhu, J. et al. Corrosion behavior of 907 steel under thin electrolyte layers of artificial seawater. J. Cent. South Univ. 22, 806–814 (2015). https://doi.org/10.1007/s11771-015-2586-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2586-7

Key words

Navigation