Skip to main content
Log in

SMC-PHD based multi-target track-before-detect with nonstandard point observations model

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Detection and tracking of multi-target with unknown and varying number is a challenging issue, especially under the condition of low signal-to-noise ratio (SNR). A modified multi-target track-before-detect (TBD) method was proposed to tackle this issue using a nonstandard point observation model. The method was developed from sequential Monte Carlo (SMC)-based probability hypothesis density (PHD) filter, and it was implemented by modifying the original calculation in update weights of the particles and by adopting an adaptive particle sampling strategy. To efficiently execute the SMC-PHD based TBD method, a fast implementation approach was also presented by partitioning the particles into multiple subsets according to their position coordinates in 2D resolution cells of the sensor. Simulation results show the effectiveness of the proposed method for time-varying multi-target tracking using raw observation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. JOHNSTON L A, KRISHNAMUTHY V. Performance analysis of a dynamic programming track-before-detect algorithm [J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38(1): 228–242.

    Article  Google Scholar 

  2. VU H X, DAVEY S J. Track-before-detect using histogram PMHT and dynamic programming [C]// Proceedings of International Conference on Digital Image Computing Techniques and Applications. Fremantle, 2012: 1–8.

    Google Scholar 

  3. DAVEY S J, RUTTEN M G, CHEUNG B. A comparison of detection performance for several track-before-detect algorithms [J]. EURASIP Journal on Advances in Signal Processing, 2008, 428036: 1–10.

    Article  Google Scholar 

  4. ORLANDO D, VENTURINO L, LOPS M, RICCI G. Track-before-detect strategies for stap radars [J]. IEEE Transactions on Signal Processing, 2010, 58(2): 933–938.

    Article  MathSciNet  Google Scholar 

  5. WAN Yang, WANG Shou-yong. A track-before-detect algorithm based on extended H particle filter [J]. Chinese Journal of Electronics, 2011, 20(2): 375–379.

    Google Scholar 

  6. LIU Jing, HAN Chong-zhao, YAO Xiang-hua, LIAN Feng. Compressed sensing based track before detect algorithm for airborne radars [J]. Progress In Electromagnetics Research, 2013, 138: 433–451.

    Article  Google Scholar 

  7. TONISSEN S M, BAR-SHALOM Y. Maximum likelihood track-before-detect with fluctuating target amplitude [J]. IEEE Transactions on Aerospace and Electronic Systems, 1998, 34(3): 796–809.

    Article  Google Scholar 

  8. NICHTERN O, ROTMAN S R. Parameter adjustment for a dynamic programming track-before-detect-based target detection algorithm [J]. EURASIP Journal on Advances in Signal Processing, 2008, 146925: 1–19.

    Google Scholar 

  9. GROSSI E, LOPS M, VENTURINO L. A novel dynamic programming algorithm for track-before-detect in radar systems [J]. IEEE Transactions on Signal Processing, 2013, 61(10): 2608–2619.

    Article  MathSciNet  Google Scholar 

  10. LIU Shu-lin, CHEN Xin-liang, ZENG Tao, ZHENG Le. New analytical approach to detection threshold of a dynamic programming track-before-detect algorithm [J]. IET Radar, Sonar and Navigation, 2013, 7(7): 773–779.

    Article  Google Scholar 

  11. MORELANDE M R, KREUCHER C M, KASTELLA K. A Bayesian approach to multiple target detection and tracking [J]. IEEE Transactions on Signal Processing, 2007, 55(5): 1589–1604.

    Article  MathSciNet  Google Scholar 

  12. ZHAN Rong-hui, WAN Jian-wei. Neural network aided adaptive unscented kalman filter for nonlinear state estimation [J]. IEEE Signal Processing Letters, 2006, 13(7): 445–448.

    Article  Google Scholar 

  13. LEHMANN F. Recursive Bayesian filtering for multitarget track-before-detect in passive radars [J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3): 2458–2480.

    Article  Google Scholar 

  14. JISHY K, LEHMANN F. A Bayesian track-before-detect procedure for passive radars [J]. EURASIP Journal on Advances in Signal Processing, 2013, 45: 1–15.

    Google Scholar 

  15. ARULAMPALAM S, MASKELL S, GORDAN N, CLAPP T. A tutorial on particle filter for on-line nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174–188.

    Article  Google Scholar 

  16. ZHAB Rong-hui, XIN Qing, WAN Jian-wei. A modified unscented particle filter for nonlinear Bayesian tracking [J]. Journal of Systems Engineering and Electronics, 2008, 19(1): 7–14.

    Article  Google Scholar 

  17. HLINOMAZ P, HONG Lang. A multi-rate multiple model track-before-detect particle filter [J]. Mathematical and Computer Modelling, 2009, 49: 146–162.

    Article  MATH  Google Scholar 

  18. FAN Ling, ZHANG Xiao-Ling, SHI Jun. Track-before-detect procedures for detection of extended object [J]. EURASIP Journal on Advances in Signal Processing, 2011, 35: 1–6.

    Google Scholar 

  19. DAVEY S J, RUTTEN M G, CHEUNG B. Using phase to improve track-before-detect [J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(1): 832–849.

    Article  Google Scholar 

  20. DAVEY S J. Histogram PMHT with particles [C]// Proceedings of the 14th International Conference on Information Fusion. Chicago, 2011: 1–8.

    Google Scholar 

  21. TANG Xu, SU Jin-zhou, ZHAO Fang-bin, ZHOU Jian, WEI Ping. Particle filter track-before-detect implementation on GPU [J]. EURASIP Journal on Wireless Communications and Networking, 2013, 38: 1–19.

    Google Scholar 

  22. BOERS Y, DRIESSEN J N. Multitarget particle filter track before detect application [J]. IEE Proceedings-Radar, Sonar, Navigation, 2004, 151(6): 351–357.

    Article  Google Scholar 

  23. MAHLER R. Statistical multisource-multitarget information fusion [M]. Boston: Artech House, 2007.

    Google Scholar 

  24. VO B N, SINGH S, DOUCET A. Sequential Monte Carlo implementation of the PHD filter for multitarget tracking [C]// Proceedings of 6th International Conference on Information Fusion. Caims: 2003, 2: 792–799.

    Google Scholar 

  25. MAHLER R. Multi-target Bayes filtering via first-order multi-target moments [J]. IEEE Transactions on Aerospace and Electronic Systems, 2003, 39(4): 1152–1178.

    Article  Google Scholar 

  26. MAHLER R. PHD filters of higher order in target number [J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(4): 1523–1543.

    Article  Google Scholar 

  27. CLARK D, BELL J. Convergence results for the particle PHD filter [J]. IEEE Transactions on Signal Processing, 2006, 54(7): 2652–2661.

    Article  Google Scholar 

  28. JOHANSEN A M, SINGH S S, DOUCET A. Convergence of the SMC implementation of the PHD filter [J]. Methodology and Computing in Applied Probability, 2006, 8(2): 265–291.

    Article  MATH  MathSciNet  Google Scholar 

  29. TONG Hui-si., ZHANG Hao, MENG Hua-dong, WANG Xi-qin. A shrinkage probability hypothesis density filter for multitarget tracking [J]. EURASIP Journal on Advances in Signal Processing 2011, 116: 1–13.

    Google Scholar 

  30. HABTEMARIAM B K, THARMARASA R, KIRUBARAJAN T. PHD filter based track-before-detect for MIMO radars [J]. Signal Processing, 2012, 92: 667–678.

    Article  Google Scholar 

  31. PUNITHAKUMAR K, KIRUBARAJAN T, SINHA A. A sequential Monte Carlo probability hypothesis density algorithm for multitarget track-before-detect [C]// Proceedings of SPIE. San Diego, 2005: 1–8.

    Google Scholar 

  32. RISTIC B, ARULAMPALAM S, GORDON N. Beyond the Kalman filter: Particle filters for tracking applications [M]. Boston: Artech House, 2004.

    Google Scholar 

  33. HOL J D. Resampling in particle filters [D]. Linköping: Linköping University, 2004.

    Google Scholar 

  34. BISHOP C M. Pattern Recognition and Machine Learning [M]. New York: Springer, 2006.

    Google Scholar 

  35. SCHUHMACHER D, VO B T, VO B N. A consistent metric for performance evaluation of multiobject filters [J]. IEEE Transactions on Signal Processing, 2008, 56(8): 3447–3457.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-hui Zhan  (占荣辉).

Additional information

Foundation item: Projects(61002022, 61471370) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhan, Rh., Gao, Yz., Hu, Jm. et al. SMC-PHD based multi-target track-before-detect with nonstandard point observations model. J. Cent. South Univ. 22, 232–240 (2015). https://doi.org/10.1007/s11771-015-2514-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2514-x

Key words

Navigation