Skip to main content
Log in

Photocatalytic oxidation of nitric oxide from simulated flue gas by wet scrubbing using ultraviolet/TiO2/H2O2 process

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Nitric oxide (NO) from flue gas is hard to remove because of low solubility and reactivity. A new technology for photocatalytic oxidation of NO using ultraviolet (UV)/TiO2/H2O2 process is studied in an efficient laboratory-scale reactor. Effects of several key operational parameters on NO removal efficiency are studied, including TiO2 content, H2O2 initial concentration, UV lamp power, NO initial content, oxygen volume fraction and TiO2/H2O2 solution volume. The results illustrate that the NO removal efficiency increases with the increasing of H2O2 initial concentration or UV lamp power. Meanwhile, a lower NO initial content or a higher TiO2/H2O2 solution volume will result in higher NO removal efficiency. In addition, oxygen volume fraction has a little effect. The highest NO removal efficiency is achieved at the TiO2 content of 0.75 g/L, H2O2 initial concentration of 2.5 mol/L, UV lamp power of 36 W, NO initial content of 206×10−6 and TiO2/H2O2 solution volume of 600 mL. It is beneficial for the development and application of NO removal from coal-fired flue gas with UV/TiO2/H2O2 process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode [J]. Nature, 1972, 238(5358): 37–38.

    Article  Google Scholar 

  2. AUGUGLIARO V, VOLUCCIA S, LODDO V, MARCHESE L, MARTRA G, PALMISANO L, SCHIAVELLO M. Photocatalytic oxidation of gaseous toluene on anatase TiO2 catalyst: Mechanistic aspects and FT-IR investigation [J]. Applied Catalysis B-Environmental, 1999, 20(1): 15–27.

    Article  Google Scholar 

  3. SHIGWEDHA N, HUA Z Z, CHEN J. A new photon kinetic-measurement based on the kinetics of electron-hole pairs in photodegradation of textile wastewater using the UV-H2O2FS-TiO2 process [J]. Journal of Environmental Sciences-China, 2007, 19(3): 367–373.

    Article  Google Scholar 

  4. LEE J B, EOM Y S, KIM J H, CHUN S N. Regeneration of waste SCR catalyst by air lift loop reactor [J]. Journal of Central South University, 2013, 20(5): 1314–1318.

    Article  Google Scholar 

  5. DALTON J S, JANES P A, JONES N G, NICHOLSON J A, HALLAM K R, ALLEN G C. Photocatalytic oxidation of NOx gases using TiO2: A surface spectroscopic approach [J]. Environmental Pollution, 2002, 120(2): 415–422.

    Article  Google Scholar 

  6. MAGGOS T, BARTZIS J G, LIAKOU M, GOBIN G. Photocatalytic degradation of NOx gases using TiO2-containing paint: A real scale study [J]. Journal of Hazardous Materials, 2007, 146(3): 668–673.

    Article  Google Scholar 

  7. WANG H Q, WU Z B, ZHAO W R, GUAN B H. Photocatalytic oxidation of nitrogen oxides using TiO2 loading on woven glass fabric [J]. Chemosphere, 2007, 66(1): 185–190.

    Article  Google Scholar 

  8. OHKO Y, NAKAMURA Y, FUKUDA A, MATSUZAWA S, TAKEUCHI K. Photocatalytic oxidation of nitrogen dioxide with TiO2 thin films under continuous UV-light illumination [J]. Journal of Physical Chemistry-C, 2008, 112(28): 10502–10508.

    Article  Google Scholar 

  9. WU Z B, WANG H Q, LIU Y, GU Z L. Photocatalytic oxidation of nitric oxide with immobilized titanium dioxide films synthesized by hydrothermal method [J]. Journal of Hazardous Materials, 2008, 151(1): 17–25.

    Article  Google Scholar 

  10. ELMOLLA E S, CHAUDHURI M. Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis [J]. Desalination, 2010, 252(1/2/3): 46–52.

    Article  Google Scholar 

  11. LAUFSA S, BURGETH G, DUTTLINGER W, KURTENBACH R, MABAN M, THOMAS C, WIESEN P, KLEFFMANN J. Conversion of nitrogen oxides on commercial photocatalytic dispersion paints [J]. Atmospheric Environment, 2010, 44(19): 2341–2349.

    Article  Google Scholar 

  12. NEGISHI N, TAKEUCHI K, IBUSUKI T. Surface structure of the TiO2 thin film photocatalyst [J]. Journal of Materials Science, 1998, 33(24): 5789–5794.

    Article  Google Scholar 

  13. SERPONE N, LAWLESS D, KHAIRUTDINOV R. Size effects on the photophysical properties of colloidal anatase TiO2 particles-size quantization or direct transitions in this indirect semiconductor [J]. Journal of Physical Chemistry, 1995, 99(45): 16646–16654.

    Article  Google Scholar 

  14. GRCIC I, VUJEVIC D, KOPRIVANAC N. Statistical evaluation of UV/TiO2/H2O2 and Fe2+/H2O2 process for the treatment of coloured wastewater: A comparative study [J]. Chemical and Biochemical Engineering Quarterly, 2010, 24(4): 387–400.

    Google Scholar 

  15. DIXIT A, TIRPUDE A J, MUNGRAY A K, CHAKRABORTY M. Degradation of 2, 4 DCP by sequential biological-advanced oxidation process using UASB and UV/TiO2/H2O2 [J]. Desalination, 2011, 272(1/2/3): 265–269.

    Article  Google Scholar 

  16. ZHANG Q, LI C L, LI T. Rapid photocatalytic decolorization of methylene blue using high photon flux UV/TiO2/H2O2 process [J]. Chemical Engineering Journal, 2013, 217: 407–413.

    Article  Google Scholar 

  17. YUAN F, HU C, HUX X, WEI D B, CHEN Y, QU J H. Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process [J]. Journal of Hazardous Materials, 2011, 185(2/3): 1256–1263.

    Article  Google Scholar 

  18. MODIRSHAHLA N, BEHNAJADY M A. Photooxidative degradation of malachite green (MG) by UV/H2O2: Influence of operational parameters and kinetic modeling [J]. Dyes and Pigments, 2006, 70(1): 54–59.

    Article  Google Scholar 

  19. MURUGANANDHAM M, SWAMINATHAN M. Photochemical oxidation of reactive azo dye with UV-H2O2 process [J]. Dyes and Pigments, 2004, 62(3): 269–275.

    Article  Google Scholar 

  20. DANESHVAR N, BEHNAJADY M A, ASGHAR Y Z. Photooxidative degradation of 4-nitrophenol (4-NP) in UV/H2O2 process: Influence of operational parameters and reaction mechanism [J]. Journal of Hazardous Materials, 2007, 139(2): 275–279.

    Article  Google Scholar 

  21. ZHANG B, ZHONG Z P, FU Z M, ZHONG D X. Experimental studies on photocatalytic oxidation of nitric oxides using titanium dioxide [J]. Journal of Southeast University (English Edition), 2012, 28(2): 179–183.

    Google Scholar 

  22. SHIRAYAMA H, TOHEZO Y, TAGUCHI S. Photodegradation of chlorinated hydrocarbons in the presence and absence of dissolved oxygen in water [J]. Water Research, 2001, 35(8): 1941–1950.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhao-ping Zhong  (仲兆平).

Additional information

Foundation item: Project(2011CB201505) supported by the National Key Basic Research Program of China; Project(BA2011031) supported by the Special Fund of Transformation of Scientific and Technological Achievements of Jiangsu Province, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, B., Zhong, Zp. & Fu, Zm. Photocatalytic oxidation of nitric oxide from simulated flue gas by wet scrubbing using ultraviolet/TiO2/H2O2 process. J. Cent. South Univ. 22, 82–87 (2015). https://doi.org/10.1007/s11771-015-2497-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2497-7

Key words

Navigation