Skip to main content
Log in

Effect of mixed moderately thermophilic adaptation on leachability and mechanism of high arsenic gold concentrate in an airlift bioreactor

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

A refractory gold concentrate with 19% arsenic was treated by a mixed moderately thermophiles in an airlift bioreactor through an adaptation protocol. The moderately thermophiles could respond well to 20% (w/v) pulp density with less than 10% loss of productivity, and resist arsenic up to 15 g/L. There were a lot of jarosite, arsenolite and sulfur, but not scorodite and ferric arsenate in the bioleached residue. Jarosite passivation and lower sulfur-oxidizing activity of the cells due to the toxicity of the high concentrations of soluble arsenic and iron ions at low pH value should mainly response for the incomplete extraction at high pulp density. The initial bacterial community did not change in nature except for new found P aeruginosa ANSC, but sulfur-oxidizing microorganisms have been dominant microorganisms after a long time of adaptation. Pseudomonas aeruginosa originating from the gold concentrate should be closely relative to the metabolism of the organic matters contained in the refractory gold concentrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ROSSI G. The design of bioreactors [J]. Hydrometallurgy, 2001, 59(2/3): 217–231.

    Article  Google Scholar 

  2. SIEGEL M H, ROBINSON C W. Application of airlift gas-liquid-solid reactors in biotechnology [J]. Chemical Engineering Science, 1992, 47(13/14): 3215–3229.

    Article  Google Scholar 

  3. MERCHUK J C. Why use air-lift bioreactors? [J]. Trends in Biotechnology, 1990, 8: 66–71.

    Article  Google Scholar 

  4. CHISTI Y. Pneumatically agitated bioreactors in industrial and environmental bioprocessing: Hydrodynamics, hydraulics, and transport phenomena [J]. Applied Mechanics Reviews, 1998, 51(1): 33–112.

    Article  Google Scholar 

  5. RUITENBERG R, SCHULTZ C E, BUISMAN C J N. Bio-oxidation of minerals in air-lift loop bioreactors [J]. International Journal of Mineral Processing, 2001, 62(1/2/3/4): 271–278.

    Article  Google Scholar 

  6. ASTUDILLO C, ACEVEDO F. Adaptation of sulfolobus metallicus to high pulp densities in the biooxidation of a flotation gold concentrate [J]. Hydrometallurgy, 2008, 92(1/2): 11–15.

    Article  Google Scholar 

  7. RAWLINGS D E. High level arsenic resistance in bacteria present in biooxidation tanks used to treat gold-bearing arsenopyrite concentrates: A review [J]. Transactions of Nonferrous Metals Society of China, 2008, 18: 1311–1318.

    Article  Google Scholar 

  8. HALLBERG K, SEHLIN H, LINDSTROM E. Toxicity of arsenic during high temperature bioleaching of gold-bearing arsenical pyrite [J]. Applied Microbiology and Biotechnology, 1996, 45(1): 212–216.

    Article  Google Scholar 

  9. ACEVED O F, GENTINA J C. Bioreactor design fundamentals and their application to gold mining [C]// DONATI, E R, SAND W. Microbial Processing of Metal Sulfides. Dordrecht, The Netherlands: Springer, 2007: 151–168.

    Chapter  Google Scholar 

  10. KINNUNEN P H M, ROBERTSON W, PLUMB J, GIBSON J, NICHOLS P, FRANZMANN P, PUHAKKA J. The isolation and use of iron-oxidizing, moderately thermophilic acidophiles from the Collie coal mine for the generation of ferric iron leaching solution [J]. Applied Microbiology and Biotechnology, 2003, 60(6): 748–753.

    Article  Google Scholar 

  11. KANDLER O, KONIG H. Cell wall polymers in archaea (archaebacteria) [J]. Cellular and Molecular Life Sciences, 1998, 54(4): 305–308.

    Article  Google Scholar 

  12. SISSING A, HARRISON S. Thermophilic mineral bioleaching performance: A compromise between maximizing mineral loading and maximizing microbial growth and activity [J]. Journal of the South African Institute of Mining and Metallurgy, 2003, 103(2): 139–142.

    Google Scholar 

  13. BATTY J D, RORKE G V. Development and commercial demonstration of the BioCOP™ thermophile process [J]. Hydrometallurgy, 2006, 83: 83–89.

    Article  Google Scholar 

  14. CORKHILL C L, VAUGHAN D J. Arsenopyrite oxidation-a review [J]. Appl Geochem, 2009, 24: 2342–2361.

    Article  Google Scholar 

  15. NESBITT H W, MUIR I J, PRATT A R. Oxidation of arsenopyrite by air and air saturated, distilled water and implications for mechanisms of oxidation [J]. Geochim Cosmochim Acta, 1995, 59: 1773–1786.

    Article  Google Scholar 

  16. WÁRQUEZ M A, OSPINA J D, MORALES A L. New insights about the bacterial oxidation of arsenopyrite: A mineralogical scope [J]. Minerals Engineering, 2012, 39: 248–254.

    Article  Google Scholar 

  17. LIU Jian-she, WANG Hua-tai, YAN Ying, WANG, Xiu-mei, HE Zhi-guo, QIU Guan-zhou. Optimum parameters for bacterial pre-oxidation of refractory gold concentrate in an airlift reactor [J]. Ming and Metallurgical Engineering, 2008, 28(5): 35–39. (in Chinese)

    MATH  Google Scholar 

  18. YU Yun-mei, ZHU Yong-xuan, WILLIAMS-JONES A E, GAO Zhen-min, LI De-xian. A kinetic study of the oxidation of arsenopyrite in acidic solutions: Implications for the environment [J]. Applied Geochemistry, 2004, 19(3): 435–444.

    Article  Google Scholar 

  19. QIU Guan-zhou, LI Qian, YU Run-lan, SUN Zhan-xue, LIU Ya-jie, CHEN Miao, YIN Hua-qun, ZHANG Ya-ge, LIANG Yi-li, XU Ling-ling, SUN Li-min, LIU Xue-duan. Column bioleaching of uranium embedded in granite porphyry by a mesophilic acidophilic consortium [J]. Bioresource Technology, 2011, 102: 4697–4702.

    Article  Google Scholar 

  20. ZHOU Ji-zhong, BRUNS M A, TIEDJE J M. DNA recovery from soils of diverse composition [J]. Appl Environ Microbiol, 1996, 62: 316–322.

    Google Scholar 

  21. ESPEJO R T, FEIJOO C G, ROMERO J, VASQUEZ M. Page analysis of the heteroduplexes formed between PCR amplified 16S ribosomal RNA genes: Estimation of sequence similarity and rDNA complexity [J]. Microbiology, 1998, 144: 1611–1617.

    Article  Google Scholar 

  22. YANG Yu, SHI Wu-yang, WAN Min-xi, ZHANG Yan-fei, ZOU Li-hong, HUANG Ju-fang, QIU Guan-zhou, LIU Xue-duan. Diversity of bacterial communities in acid mine drainage from the Shen-bu copper mine, Gansu province, China [J]. Electron J Biotechnol, 2008, 11: 1–12.

    Article  Google Scholar 

  23. D’HUGUES P, FOUCHER S, GALLE-CAVALLONI P, MORIN D. Continuous bioleaching of chalcopyrite using a novel extremely thermophilic mixed culture [J]. International Journal of Mineral Processing, 2002, 66(1/2/3/4): 107–119.

    Article  Google Scholar 

  24. NEMATI M, LOWENADLER J, HARRISON S. Particle size effects in bioleaching of pyrite by acidophilic thermophile Sulfolobus metallicus (BC) [J]. Applied Microbiology and Biotechnology, 2000, 53(2): 173–179.

    Article  Google Scholar 

  25. YU Run-lan, OU Yang, TAN Jian-xi, WU Fa-deng, SUN Jing, MIAO Lei, ZHONG Dai-li. Effect of EPS on adhesion of acidithiobacillus ferrooxidans on chalcopyrite and pyrite mineral surfaces [J]. Transactions of Nonferrous Metals Society of China, 2011, 21(2): 407–412.

    Article  Google Scholar 

  26. BREED A W, GLATZ A, HANSFORD G S, HARRISON S T L. The effect of As(III) and As(V) on the batch bioleaching of a pyrite-arsenopyrite concentrate [J]. Minerals Engineering, 1996, 9(12): 1235–1252.

    Article  Google Scholar 

  27. GAO Jian, KANG Jian, WU Xue-ling, XU Jing, LI Bang-mei, QIU Guan-zhou. Effect of Fe2+ on growth activity of L. ferriphilum [J]. The Chinese Journal of Nonferrous Metals, 2008, 18(1): 159–162. (in Chinese).

    Google Scholar 

  28. TATYANA I B, TSAPLINA I A, KONDRTEVA T F, DUDA V I, SUZINA N E, MELAMUD V S, TATYANA P T, KARAVAIKO G I. Sulfobacillus thermotolerans sp nov, a thermotolerant, chemolithotrophic bacterium [J]. International Journal of Systematic and Evolutionary Microbiology, 2006, 56(5): 1039–1042.

    Article  Google Scholar 

  29. STOLZ J F, BASU P, SANTINI J M, OREMLAND R S. Arsenic and selenium in microbial metabolism [J]. Annu Rev Microbiol, 2006, 60: 107–130.

    Article  Google Scholar 

  30. TUFFIN I M, DE GROOT P, DEANS S M, RAWLINGS D E. An unusual Tn21-like transposon containing an ars operon is present in highly arsenic resistant strains of the biomining bacterium Acidithiobacillus caldus [J]. Microbiology, 2005, 151: 3027–3039.

    Article  Google Scholar 

  31. LENG Fei-fan, LI Kai-yan, ZHANG, Xiao-xue, LI Yong-quan, ZHU Yan, LU Jian-fei, LI Hong-yu. Comparative study of inorganic arsenic resistance of several strains of Acidithiobacillus thiooxidans and Acidithiobacillus ferrooxidans [J]. Hydrometallurgy, 2009, 98(3/4): 235–240.

    Article  Google Scholar 

  32. LI Yi, LAI Lai-ren. Preliminary mineralogical study of scorodite [J]. Mineral Resources and Geology, 2003, 17(2): 170–172. (in Chinese)

    Google Scholar 

  33. KULPA C F, BRIERLEY J A. Microbial deactivation of pregrobbing carbon in gold ore [C]// TORMA A E, WEY J E, LAKSHMANAN V I. Biohydrometallurgical Technologies 1, Proceedings of an International Biohydrometallurgical Symposium. Jackson Hole, Wyoming, USA, 1993: 427–435.

    Google Scholar 

  34. SETT L, LANZARINI G, PIFFERI P G. Dibenzothiophene biodegradation by a Pseudomonas sp. in model solutions [J]. Process Biochem, 1995, 30: 721–728.

    Article  Google Scholar 

  35. XU Hong-xiang, CHEN Xuan-cheng. Research and applied of coal microorganism desulfurization technology [J]. Coal Technology, 2009, 28(7): 159–160. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Run-lan Yu  (余润兰) or Wei-min Zeng  (曾伟民).

Additional information

Foundation item: Project(2010CB630903) supported by the National Basic Research Program of China; Project(31200382) supported by the Chinese Science Foundation for Distinguished Group, China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Rl., Wu, Fd., Chen, A. et al. Effect of mixed moderately thermophilic adaptation on leachability and mechanism of high arsenic gold concentrate in an airlift bioreactor. J. Cent. South Univ. 22, 66–73 (2015). https://doi.org/10.1007/s11771-015-2495-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-015-2495-9

Key words

Navigation