Heat transfer study on solid and porous convective fins with temperature-dependent heat generation using efficient analytical method

Abstract

A simple and highly accurate semi-analytical method, called the differential transformation method (DTM), was used for solving the nonlinear temperature distribution equation in solid and porous longitudinal fin with temperature dependent internal heat generation. The problem was solved for two main cases. In the first case, heat generation was assumed variable by fin temperature for a solid fin and in second heat generation varied with temperature for a porous fin. Results are presented for the temperature distribution for a range of values of parameters appearing in the mathematical formulation (e.g. N, ɛ G , and G). Results reveal that DTM is very effective and convenient. Also, it is found that this method can achieve more suitable results in comparison to numerical methods.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    KRAUS A D, AZIZ A, WELTY J R. Extended Surface Heat Transfer [M]. New York: John Wiley, 2002.

    Google Scholar 

  2. [2]

    AZIZ A, BOUAZIZ M N. A least squares method for a longitudinal fin with temperature dependent internal heat generation and thermal conductivity [J]. Energ Conver and Manage, 2011, 52: 2876–2882.

    Article  Google Scholar 

  3. [3]

    RAZANI A, AHMADI G. On optimization of circular fins with heat generation [J]. J Franklin Inst, 1977, 303(2): 211–8.

    Article  Google Scholar 

  4. [4]

    UNAL H C. Temperature distributions in fins with uniform and non-uniform heat generation and non-uniform heat transfer coefficient [J]. Int J Heat Mass Transfer, 1987, 30(7): 1465–77.

    Article  Google Scholar 

  5. [5]

    SHOUMAN A R. Nonlinear heat transfer and temperature distribution through fins and electric elements of arbitrary geometry with temperature dependent properties and heat generation [R]. NASA technical note, TN D-4257, 1968.

    Google Scholar 

  6. [6]

    KUNDU B. Performance and optimum design analysis of longitudinal and pin fins with simultaneous heat and mass transfer: Unified and comparative investigations [J]. App Therm Eng, 2007, 27: 976–987.

    Article  Google Scholar 

  7. [7]

    DOMAIRRY G, FAZELI M. Homotopy analysis method to determine the fin efficiency of convective straight fins with temperature-dependent thermal conductivity [J]. Commun in Nonlin Sci and Numeric Simu, 2009, 14: 489–499.

    Article  Google Scholar 

  8. [8]

    GANJI D D, GANJI Z Z, GANJI H D. Determination of Temperature distribution for annual fins with temperature-dependent thermal conductivity by HPM [J]. Therm Sci, 2011, 15: 111–115.

    Article  Google Scholar 

  9. [9]

    AZIZ A, KHANI F. Convection-radiation from a continuously moving fin of a variable thermal conductivity [J]. J of the Franklin Inst, 2011, 348: 640–651.

    Article  MATH  MathSciNet  Google Scholar 

  10. [10]

    BOUAZIZ M N, AZIZ A. Simple and accurate solution for convective-radiative fin with temperature dependent thermal conductivity using double optimal linearization [J]. Eneg Convers Manage, 2010, 51: 2776–2782.

    Article  Google Scholar 

  11. [11]

    MOSTAFA I. Application of homotopy analysis method for fin efficiency of convective straight fins with temperature-dependent thermal conductivity [J]. Math and Comp in Simul, 2008, 79: 189–200.

    Article  Google Scholar 

  12. [12]

    ZHOU J K. Differential transformation method and its application for electrical circuits [M]. Wuhan: China Huazhong University Press, 1986.

    Google Scholar 

  13. [13]

    GHAFOORI S, MOTEVALLI M, NEJAD M G, SHAKERI F, GANJI D D, JALAAL M. Efficiency of differential transformation method for nonlinear oscillation: Comparison with HPM and VIM [J]. Current Appl Phys, 2011, 11: 965–971.

    Article  Google Scholar 

  14. [14]

    ABDEL-HALIM HASSAN I H. Application to differential transformation method for solving systems of differential equations [J]. Appl Math Modelling, 2008, 32: 2552–2559.

    Article  MATH  MathSciNet  Google Scholar 

  15. [15]

    ABAZARI R, ABAZARI M. Numerical simulation of generalized Hirota-Satsuma coupled KdV equation by RDTM and comparison with DTM [J]. Commun Nonlin Sci Numer Simulat, 2012, 17: 619–629.

    Article  MATH  MathSciNet  Google Scholar 

  16. [16]

    RASHIDI M M, LARAQI N, SADRI S M. A novel analytical solution of mixed convection about an inclined flat plate embedded in a porous medium using the DTM-Padé [J]. Int J of Thermal Sci, 2010, 49: 2405–2412.

    Article  Google Scholar 

  17. [17]

    ABBASOV A, BAHADIR A R. The investigation of the transient regimes in the nonlinear systems by the generalized classical method [J]. Math Prob Eng, 2005, 5: 503–519.

    Article  MathSciNet  Google Scholar 

  18. [18]

    BALKAYA M, KAYA M O, SAGLAMER A. Analysis of the vibration of an elastic beam supported on elastic soil using the differential transform method [J]. Arch Appl Mech, 2009, 79: 135–146.

    Article  MATH  Google Scholar 

  19. [19]

    BORHANIFAR A, ABAZARI R. Exact solutions for non-linear Schrdinger equations by differential transformation method [J]. J Appl Math Comput, 2011, 35: 37–51.

    Article  MATH  MathSciNet  Google Scholar 

  20. [20]

    MORADI A, AHMADIKIA H. Analytical solution for different profiles of fin with temperature-dependent thermal conductivity [J]. Mathematical Problems in Engineering, doi: 10.1155/2010/568263.

  21. [21]

    MORADI A. Analytical solution for fin with temperature dependent heat transfer coefficient [J]. Int J of Eng & Appl Sci, 2011, 3(2): 1–12.

    Google Scholar 

  22. [22]

    KUNDU B, BARMAN D, DEBNATH S. An analytical approach for predicting fin performance of triangular fins subject to simultaneous heat and mass transfer [J]. Int J of Refrig, 2008, 31: 1113–1120.

    Article  Google Scholar 

  23. [23]

    HATAMI M, HASANPOUR A, GANJI D D. Heat transfer study through porous fins (Si3N4 and AL) with temperature-dependent heat generation [J]. Energy Conversion and Management, 2013, 74: 9–16.

    Article  Google Scholar 

  24. [24]

    HATAMI M, GANJI D D. Thermal behavior of longitudinal convective-radiative porous fins with different section shapes and ceramic materials (SiC and Si3N4) [J]. Ceramics International, 2014, 40: 6765–6775.

    Article  Google Scholar 

  25. [25]

    HATAMI M, GANJI D D. Thermal and flow analysis of microchannel heat sink (MCHS) cooled by Cu-water nanofluid using porous media approach and least square method [J]. Energy Conversion and Management, 2014, 78: 347–358.

    Article  Google Scholar 

  26. [26]

    HATAMI M, GANJI D D. Investigation of refrigeration efficiency for fully wet circular porous fins with variable sections by combined heat and mass transfer analysis [J]. International Journal of Refrigeration, 2014, 40: 140–151.

    Article  Google Scholar 

  27. [27]

    HATAMI M, GANJI D D. Thermal performance of circular convective-radiative porous fins with different section shapes and materials [J]. Energy Conversion and Management, 213, 76: 185–193.

  28. [28]

    HATAMI M, MEHDIZADEH AHANGAR G H R, GANJI D D, BOUBAKER K. Refrigeration efficiency analysis for fully wet semi-spherical porous fins [J]. Energy Conversion and Management, 2014, 84: 533–540.

    Article  Google Scholar 

  29. [29]

    GHASEMI S E, JALILI PALANDI S, HATAMI M, GANJI D D. Efficient analytical approaches for motion of a spherical solid particle in plane couette fluid flow using nonlinear methods [J]. The Journal of Mathematics and Computer Science, 2012, 5(2): 97–104.

    Google Scholar 

  30. [30]

    GHASEMI S E, HATAMI M, GANJI D D. Analytical thermal analysis of air-heating solar collectors [J]. Journal of Mechanical Science and Technology, 2013, 27(11): 3525–3530.

    Article  Google Scholar 

  31. [31]

    GHASEMI S E, HATAMI M, MEHDIZADEH AHANGAR GH R, GANJI D D. Electrohydrodynamic flow analysis in a circular cylindrical conduit using Least Square Method [J]. Journal of Electrostatics, 2014, 72: 47–52.

    Article  Google Scholar 

  32. [32]

    GHASEMI SEIYED E, ZOLFAGHARIAN ALI, GANJI D D. Study on motion of rigid rod on a circular surface using MHPM [J]. Propulsion and Power Research, 2014, 3(3): 159–164.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. E. Ghasemi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ghasemi, S.E., Valipour, P., Hatami, M. et al. Heat transfer study on solid and porous convective fins with temperature-dependent heat generation using efficient analytical method. J. Cent. South Univ. 21, 4592–4598 (2014). https://doi.org/10.1007/s11771-014-2465-7

Download citation

Key words

  • heat transfer
  • convective fin
  • solid and porous fin
  • heat generation
  • analytical method
  • thermal analysis