Skip to main content
Log in

Biogenic characteristics of Mesozoic cherts in southern Tibet and its significance

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The Xialu chert, which contains abundant biological information, were investigated by major element analysis, micro-Raman, SEM and EPMA. The results show that SiO2 content of chert is 84.12%–93.08%, averaging 89.84%. The close packed structures of low degree crystallinity of quartz indicate the hydrothermal origin. SiO2 of modern hot springs exhibit loose silica pellets and nodular, beaded structures. Under polarization microscope, the presence of biological skeleton structures indicate that biological activities are involved in the hydrothermal deposition, which correspond to the geochemical characteristics: w(SiO2)/ w(K2O+Na2O), w(SiO2)/w(Al2O3) and w(SiO2)/w(MgO), with average values of 295.29, 68.88 and 284.45, respectively. SiO2 is enriched in the organism (radiolarian) centers, the degree order of SiO2 within the biologic structures is much higher than that of outside. The impurity minerals albites are formed earlier than the original deposition. Kaolinites, feldspars and mixture of organic materials display lower degree of crystallinities and accumulate as vermicular aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. LIU Bao-jun. Sedimentary petrography [M]. Beijing: Geological Press, 1980: 1–497. (in Chinese)

    Google Scholar 

  2. OKAY A I, NOBLE P J, TEKIN U K. Devonian radiolarian ribbon cherts from the Karakaya Complex, Northwest Turkey: Implications for the Paleo-Tethyan evolution [J]. Comptes Rendus Palevol, 2011, 10(1): 1–10.

    Article  Google Scholar 

  3. ZHOU Yong-zhang, FU Wei, YANG Zhi-jun, NIE Feng-jun, LI Wen, ZHAO Wen-xia. Geochemical characteristicsof Mesozoic chert from southern Tibet and its petrogenic implications [J]. Acta Petrologica Sinica, 2008, 24(3): 600–608. (in Chinese)

    Google Scholar 

  4. CAI Fu-long, DING Lin, YUE Ya-hui. Provenance analysis of upper Cretaceous strata in the Tethys Himalaya, southern Tibet: Implications for timing of India-Asia collision [J]. Earth and Planetary Science Letters, 2011, 305(1/2): 195–206.

    Article  Google Scholar 

  5. ZHANG Cheng-li, ZHOU Ding-wu, LU Guan-xiang, WANG JU-LI, WANG Run-san. Geochemical characteristicsand sedimentary environments of cherts from kumishi ophiolitic mélange in southern Tianshan [J]. Acta Petrologica Sinica, 2006, 22(1): 57–64. (in Chinese)

    Google Scholar 

  6. LI Hong-zhong, ZHOU Yong-zhang, YANG Zhi-jun, GU Zhi-hong, LV Wen-chao, HE Jun-guo, LI Wen, AN Yan-ei. Geochemical characteristics and their geological implication of cherts from Bafangshan-Erlihe area in western Qinling orogen [J]. Acta Petrological Sinica, 2009, 25(11): 3094–3102. (in Chinese)

    Google Scholar 

  7. MCBRIDE E F, FOLK R L. Features and origin of Italian Jurassic radiolarites deposited on continental crust [J]. Journal of Sedimentary Rearch, 1979, 49(3): 837–868.

    Google Scholar 

  8. BARRETT T. Stratigraphy and sedimentology of Jurassic bedded cherts overlying ophiolites in the North Apennines, Italy [J]. Sedimentology, 1982, 29: 353–373.

    Article  Google Scholar 

  9. HE Jun-guo, ZHOU Yong-zhang, YANG Zhi-jun, ZHANG Cheng-bo, FU Wei. Petrologic and geochemical characteristics of the hydrothermal chert in southern Tibet and its geological significance [J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2007, 26(1): 74–81. (in Chinese)

    Google Scholar 

  10. HE Jun-guo, ZHOU Yong-zhang, YANG Zhi-jun, LI Hong-zhong, WANG Xiao-yue. Study on geochemical characteristics and depositional environment of pengcuolin chert, southern tibet [J]. Journal of Jilin University (Earth Science Edition), 2009, 39(6): 1055–1065. (in Chinese).

    Google Scholar 

  11. MATSUOKA A, YANG Qun, KOBAYASHI K, TAKEI M, NAGAHASHI T, ZENG Qing-gao, WANG YU-JING. Jurassic-Cretaceous radiolarian biostratigraphy and sedimentary environments of the Ceno-Tethys: Records from the Xialu Chert in the Yarlung-Zangbo Suture Zone, southern Tibet [J]. Journal of Asian Earth Sciences, 2002, 20(3): 277–287.

    Article  Google Scholar 

  12. FU Wei, ZHOU Yong-zhang, YANG Zhi-jun, NIE Feng-jun, HE Jun-guo, LI Wen. Chert in southern Tibet, China: Its field geological features and related scientific problems [J]. Geological Bulletin of China, 2007, 26(4): 492–501. (in Chinese)

    Google Scholar 

  13. ZHOU Yong-zhang, FU Wei, YANG Zhi-jun, NIE Feng-jun, HE Jun-guo, ZHAO Yuan-yi, LI Zhen-qing, HU Peng, SHI Gui-yong, LI Wen. Microfabrics of chert from Yarlung Zangbo Suture Zone and southern Tibet and its geological implications [J]. Acta Petrologica Sinica, 2006, 22(3): 742–750. (in Chinese)

    Google Scholar 

  14. ZAHO Yuan-yi, HAN Jing-yi, GUO Li-he, QIAN Zuo-hua, ZHOU Yong-zhang, NIE Feng-jun, LI Zhen-qing. Characteristics and geological significance of mineralogy and fabrics for the hot spring cesium deposit occurring within the Targejia district, Tibet [J]. Acta Petrologica Sinica, 2008, 24(3): 519–530. (in Chinese)

    Google Scholar 

  15. ABALOS B, PUELLES P, FERNANDZE-ARMAS S, SARRIONANDIA F. EBSD microfabric study of pre-Cambrian deformations recorded in quartz pebbles from the Sierra de la Demanda (N Spain) [J]. Journal of Structural Geology, 2011, 33(4): 500–518.

    Article  Google Scholar 

  16. LI Hong-zhong, YANG Zhi-jun, HE Jun-guo, ZHOU Yong-zhang, MA Zhan-wu, LV Wen-chao, ZHOU Guo-fu, An Yang-fei, LI Wen, LIANG Jin, WANG Chi. A study of micro-area compositional characteristics and the evolution of cherts from Bafangshan-Erlihe Pb-Zn ore deposit in Western Qinling Orogen [J]. Earth Science Frontiers, 2010, 17(4): 290–298. (in Chinese)

    Google Scholar 

  17. LI Hong-zhong, ZHOU Yong-zhang, YANG Zhi-jun, ZHOU Guo-fu, HE Jun-guo, MA Zhan-wu, LV Wen-chao, LI Wen, LIANG Jin, LU Wen-ji. Diagenesis and metallogenesis evolution of chert in west qinling orogenic belt: A Case from Bafangshan-Erlihe Pb-Zn ore deposit [J]. Journal of Jilin University (Earth Science Edition), 2011, 41(3): 715–723. (in Chinese)

    Google Scholar 

  18. PIRAJNO F, GREY K. Chert in the Palaeoproterozoic Bartle Member, Killara Formation, Yerrida Basin, Western Australia: A rift-related playa lake and thermal spring environment? Precambrian Research [J]. 2002, (113): 169–192.

    Google Scholar 

  19. SUGITANI K, YAMAMOTO K, WADA H, BINU-LAL S S, YONESHIGE M. Geochemistry of Archean carbonaceous cherts deposited at immature island-arc setting in the pilbara block, western Australia [J]. Sedimentary Geology, 2002, 151: 45–66.

    Article  Google Scholar 

  20. MIGASZEWSKI Z M, GAYUSZKA A, DURAKIEWICZ T, STARNAWSKA E. Middle oxfordian lower-kimmeridgian chert nodules in the holy cross mountains, south-central Poland [J]. Sedimentary Geology, 2006, 187: 11–28.

    Article  Google Scholar 

  21. YU Bing-song, DONG Hai-liang, WIDOM E, CHEN Jiang-qing, LIN Chang-song. Geochemistry of basal Cambrian black shales and cherts from the northern tarim basin, northwest China: Implications for depositional setting and tectonic history [J]. Journal of Asian Earth Sciences, 2009, 34: 418–436.

    Article  Google Scholar 

  22. IKEDA M, TADA R, SAKUMA H. Astronomical cycle origin of bedded chert: A middle triassic bedded chert sequence, Inuyama, Japan [J]. Earth and Planetary Science Letters, 2010, 297: 369–378.

    Article  Google Scholar 

  23. SUGAHARA H, SUGITANI K, MIM URA K, YAMASHITA F, YAMAMOTO K. A systematic rare-earth elements and yttrium study of Archean cherts at the Mount Goldsworthy greenstone belt in the Pilbara Craton: Implications for the origin of microfossil-bearing black cherts [J]. Precambrian Research, 2010, 177: 73–87.

    Article  Google Scholar 

  24. VANDENBOOM S H J M, WAN BERGEN M J, VROON P Z, DE VRIE S T, NIJMAN W. Silicon isotope and trace element constraints on the origin of 3.5 Ga cherts: Implications for early archaean marine environments [J]. Geochimica et Cosmochimica Acta, 2010, 74(3): 1077–1103.

    Article  Google Scholar 

  25. ZHAO Yuan-yi, FAN Xing-tao, HAN Jing-yi, DENG Jian, ZAHO Xi-tao. Geologic and geochemical features and ore forming process for hot spring cesium deposit of Gulu Area, Nagqu Region, Tibet, China [J]. Geological Bulletin of China, 2009, 28(7): 933–954. (in Chinese)

    Google Scholar 

  26. MURRY R W, JONE D L, BUCHHOLTZ T, BRINK M R. Diagenetic formation of bedded chert: Evidence from chemistry of the chert-shale couplet [J]. Geology, 1992, 20: 271–274.

    Article  Google Scholar 

  27. ZHANG Qi, ZHOU Guo-qing. Ophiolites in China [M]. Beijing: Science Press, 2001: 1–182. (in Chinese)

    Google Scholar 

  28. WANG Cheng-shan. The Xigaze arc basin and Yarlung Zangbo suture [M]. Beijing: Geology press, 1999: 1–237. (in Chinese)

    Google Scholar 

  29. XIAO Xu-chang, WAN Zi-yi, LI Guang-cen, CAO You-gong, ZHOU Xiang. Yarlung Zangbo sutrue and the structural evolution of the adjacent areas [J]. Acta Geologica Sinica 1983(2): 205–212. (in Chinese)

    Google Scholar 

  30. XIAO Xu-chang, LI Ting-dong, LI Guang-cen. Structural lithosphere evolutions of Himalaya [M]. Beijing: Geology press, 1988: 1–236. (in Chinese)

    Google Scholar 

  31. KNAUTH L P, LOWE D R. Oxygen isotope geochemistry of cherts from the Onverwacht Group (3.4 billion years), Transvaal, South Africa, with implications for secular variations in the isotopic composition of cherts [J]. Earth and Planetary Science Letters, 1978, 41: 209–222.

    Article  Google Scholar 

  32. YAMAMOTO K. Geochemical characteristics and depositional environments of cherts and associated rocks in the Franciscan and Shimanto Terranes [J]. Sedimentary Geology, 1987, 52(1/2): 65–108.

    Article  Google Scholar 

  33. GIRTY G H, RIDGE D L, KNAACK C, JOHNSON D, AL-RIYAMI R K. Provenance and depositional setting of Paleozoic chert and argillite, Sierra Nevada, California [J]. Journal of Sedimentary research, 1996, 66(1): 107–118.

    Google Scholar 

  34. TAKAYANAGI Y. Depositional environments of bedded cherts of the Shimanto terrane, the KiiPeninsula, inferred from normal paraffin and major element compositions [J]. Journal of Geology Society of Japan, 1998, 104: 501–515.

    Article  Google Scholar 

  35. ARMSTRONG H A, OWEN A W, D F J. Rear earth geochemistry of arenig chert from the ballantrae ophiolite and leadhills imbricate zone, southern scotland: Implications for origin and significance to the caledonian orogeny [J]. Journal of the Geological Society, 1999, 156: 549–560.

    Article  Google Scholar 

  36. OWEN A W, ARMSTRONG H A, FLOY J D. Rare earth element geochemistry of upper Ordovician cherts from the southern upland of scotland [J]. Journal of the Geological Society, 1999, 156: 191–204.

    Article  Google Scholar 

  37. YASUHIRO K, KYOKO N, YUKIO I. Geochemistry of late permian to Early Triassic pelagic cherts from southwest Japan: Implications for an oceanic redox change [J]. Chemical Geology, 2002, 182: 15–34.

    Article  Google Scholar 

  38. van ZUILEN M A, CHAUSSIDON M, ROLLION-BARD C, MARTY B. Carbonaceous cherts of the Barberton Greenstone Belt, South Africa: Isotopic, chemical and structural characteristics of individual microstructures [J]. Geochimica et Cosmochimica Acta, 2007, 71: 655–669.

    Article  Google Scholar 

  39. SUGISAKI R, KINOSHITA T. Major element chemistry of the sediments on the central Pacific Transect [J]. Geol Surv Japan Cruise, 1982, 18: 293–312.

    Google Scholar 

  40. MURRY R W. Chemical criteria to identify the depositional environment of chert: General principles and applications [J]. Sedimentary Geology, 1994, 90(3/4): 213–232.

    Article  Google Scholar 

  41. ZHANG Fu-xin. The recognition and exploration significance of exhalites related to Pb-Zn mineralizationsins devonian formations in Qinling Mountains [J]. Geology and Prospecting, 1989, 25(5): 11–18. (in Chinese).

    Google Scholar 

  42. TANG Zhao-hui, ZENG Yun-fu. Petrology, geochemistry and origin of cherts in the uraniferous formations, middle silurian west Qinling range [J]. Acta Petrologica Sinica, 1990, (2): 62–71. (in Chingese).

    Google Scholar 

  43. WANG Dong-an, CHEN Rui-jun. Geochemically genetic criteria of silicolites in Yaluzangbu suture belt and their geological significance [J]. Acta Sedimentologic Sinica, 1995, 13(1): 27–31. (in Chinese).

    Google Scholar 

  44. HAN Fa, HARISON W. Evidence for exhalative origin for rocks and ores of the dachang tin polymetallic field: The ore-bearing formation and hydrothermal exhalative sedimentary rocks [J]. Mineral Deposits, 1989, 8(2): 25–40.

    Google Scholar 

  45. ADACHI M, YAMAMOTO K, SUGISAKI R. Hydrothermal chert and associated siliceous rocks from the northern Pacific and their geological significance as indication of ocean ridge activity [J]. Sedimentary Geology, 1986, 47(1/2): 125–148.

    Article  Google Scholar 

  46. DUHIG N O. Cambrian microbian and silica geltextures in silica iron exhalites from the Mount Windsor volcanic belt Australian: Their petrography, chemistry, and origin [J]. Economic Geology, 1992, 87(3): 764–768.

    Article  Google Scholar 

  47. WEN Lu, LIANG Wan-xue, ZHANG Zheng-gang, HUANG Jin-chu. Infrared Spectroscopy of the mineral [M]. Chongqing: Chongqing University Press, 1989: 1–190. (in Chinese)

    Google Scholar 

  48. NOONS R E, DEVONSHIRE R, CLAPP T V, OJHA S M, MCCARTHY O. Analysis of waveguide silica glasses using Raman microscopy [J]. Journal of Non-Crystalline Solids, 2008, 354: 3059–3071.

    Article  Google Scholar 

  49. YOSHIKAWA M, IWAGAMI K, MORITA N, MATSUNOBE T, ISHIDA H. Characterization of fluorine-doped silicon dioxide film by Raman spectroscopy [J]. Thin Solid Film, 1997, 310: 167–170.

    Article  Google Scholar 

  50. OSTROUMOV M, FAULQUES E, LOUNEJEVA E. Raman spectroscopy of natural silica in Chicxulub impactite, Mexico[J]. Comptes Rendus Geoscience, 2002, 334(1): 21–26.

    Article  Google Scholar 

  51. JI Sheng-fu, XIAO Tian-chun, LI Shu-ben, CHOU Ling-jun, ZAHNG Bing, XU Chuan-zhi, HOU Rui-ling, ANDREW P E, GREEN MALCOMN L H. Surface WO4 tetrahedron: the essence of the oxidative coupling of methane over M-W-Mn/SiO2 catalysts [J]. Journal of Catalysis, 2003, 220(1): 47–56.

    Article  Google Scholar 

  52. SCOTT J F, PORTO S P S. Longitudinal and transverse optical lattice vibrations in quartz [J]. Phys Rev, 1967, 161: 903–910.

    Article  Google Scholar 

  53. YOU Jing-lin, JIANG Guo-chang, HOU Huai-yu. Quantum chemistry study on superstructure and Raman spectra of binary sodium silicatesv [J]. Raman Spectrosc, 2004, 36(3): 237–249. (in Chinese).

    Article  Google Scholar 

  54. KE Yi-kan, DONG Hui-ru. Analysis Chemistry-The third volume: Analysis spectrum [M]. Beijing: Chemical Industry Press, 1998, 1–1324. (in Chinese)

    Google Scholar 

  55. YANG Zhi-jun, LI Hong-zhong, PENG Ming-sheng, CHEN Jun, LIN Feng, SU Yu-wei. Study on the HPHT synthetic diamond crystal from Fe-C(H) system and its significance [J]. Chinese Science Bulletin, 2007, 53(1): 137–144.

    Google Scholar 

  56. LYNNE B Y, CAMPBELL K A, MOORE J N, BROWNE P R L. Diagenesis of 1900-year-old siliceous sinter (opal-A to quartz) at Opal Mound, Roosevelt Hot Springs, Utah, U.S.A [J]. Sedimentary Geology, 2005, 179(3/4): 249–278.

    Article  Google Scholar 

  57. ZHENG Mian-ping, WANG Qiu-xia, DUO Ji, LIU Jie, ZHANG Su-chun. New hydrothermal mineralization-cesium mineral deposits [M]. Beijing: Geology Press, 1995. (in Chinese)

    Google Scholar 

  58. MURRY RW, BUCHHOLTZ T, BRINK M R, GERLACH D C, RUSS P G, JONES D L. Rare earth, major, and trace elements in chert from the Franciscan Complex and Monterey Group, California: Assessing REE sources to fine-grained marine sediments [J]. Geochimica et Cosmochimica Acta, 1991, 55: 1875–1895.

    Article  Google Scholar 

  59. POTAPOV V V, SERDAN A A. Silica precipitation from hydrothermal heat-carrier by electrocoagulation [J]. Chemical technology, 2002, (9): 2–9.

    Google Scholar 

  60. POTAPOV V V. Precipitation of amorphous silica from a high-temperature hydrothermal solution [J]. Glass Physics and Chemistry, 2004, 30(1): 73–81.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-guo He  (何俊国).

Additional information

Foundation item: Projects(41273040, 41303025) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Jg., Zhou, Yz. & Li, Hz. Biogenic characteristics of Mesozoic cherts in southern Tibet and its significance. J. Cent. South Univ. 21, 1477–1490 (2014). https://doi.org/10.1007/s11771-014-2088-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-014-2088-z

Key words

Navigation