Skip to main content
Log in

Modeling approaches to pressure balance dynamic system in shield tunneling

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

In order to deal with modeling problem of a pressure balance system with time-delay, nonlinear, time-varying and uncertain characteristics, an intelligent modeling procedure is proposed, which is based on artificial neural network (ANN) and input-output data of the system during shield tunneling and can overcome the precision problem in mechanistic modeling (MM) approach. The computational results show that the training algorithm with Gauss-Newton optimization has fast convergent speed. The experimental investigation indicates that, compared with mechanistic modeling approach, intelligent modeling procedure can obviously increase the precision in both soil pressure fitting and forecasting period. The effectiveness and accuracy of proposed intelligent modeling procedure are verified in laboratory tests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. VINAI R, OGGERI C, PEILA D. Soil conditioning of sand for EPB applications: A laboratory research [J]. Tunnelling and Underground Space Technology, 2008, 23(3): 308–317.

    Article  Google Scholar 

  2. DEVAU N, CADRE E L, HINSINGER P, GERARD F. A mechanistic model for understanding root-induced chemical changes controlling phosphorus availability [J]. Annals of Botany, 2010, 105(7): 1183–1197.

    Article  Google Scholar 

  3. HONG Y S, ROSEN M R, REEVES R R, WANG L T. Dynamic fuzzy modeling of storm water infiltration in urban fractured aquifers [J]. Journal of Hydrologic Engineering, 2002, 7(5): 380–391.

    Article  Google Scholar 

  4. SHI H, YANG H Y, GONG G F. Determination of the cutterhead torque for EPB shield tunneling machine [J]. Automation in Construction, 2011, 20(8): 1087–1095.

    Article  Google Scholar 

  5. XU Q W, ZHU H H, DING W Q, GE X R. Laboratory model tests and field investigations of EPB shield machine tunneling in soft ground in Shanghai [J]. Tunnelling and Underground Space Technology, 2011, 26(1): 1–14.

    Article  MATH  Google Scholar 

  6. YANG H Y, SHI H, GONG G F, HU G L. Electro-hydraulic proportional control of thrust system for shield tunneling machine [J]. Automation in Construction, 2009, 18(7): 950–956.

    Article  Google Scholar 

  7. YEH I C. Application of neural networks to automatic soil pressure balance control for shield tunneling [J]. Automation in Construction, 1997, 5(5): 421–426.

    Article  Google Scholar 

  8. PSICHOGIOS D C, UNGAR L H. A hybrid neural network-first principles approach to process modeling [J]. AIChE Journal, 1992, 38(10): 1499–1512.

    Article  Google Scholar 

  9. KLEMENC J, WAGNER A, FAJDIGA M. Modeling the S-N curves of polyamide PA66 using a serial hybrid neural network [J]. Journal of Engineering Materials and Technology, 2011, 133(3): 1–14.

    Google Scholar 

  10. GUPTA S, LIU P H, SVORONOS S A, SHARMA R, ABDEL-KHALEK N A, CHENG Y, EL-SHALL H. Hybrid first-principles/ neural networks model for column flotation [J]. AIChE Journal, 1999, 45(3): 557–572.

    Article  Google Scholar 

  11. SAFAVI A A, NOORAII A, ROMAGNOLI J A, HAN M. A hybrid model formulation for a distillation column and the online optimization study [J]. Journal of Process Control, 1999, 9(2): 125–134.

    Article  Google Scholar 

  12. JEONG H, HWANG W, KIM E. Hybrid modeling approach to improve the forecasting capability for the gaseous radionuclide in a nuclear site [J]. Annals of Nuclear Energy, 2012, 42: 30–34.

    Article  Google Scholar 

  13. FREIRE J R C S, NETO A D D, de AQUINO E M F. Comparative study between ANN models and equations in the conventional analysis of fatigue failure of GFRP [J]. Int J Fatigue, 2009, 31(5): 831–839.

    Article  Google Scholar 

  14. VANEK M, HRNCIRIK P, VOVSK J, NAHLIK J. On-line estimation of biomass concentration using a neural network and information about metabolic state [J]. Bioprocess and Biosystems Engineering, 2004, 27(1): 9–15.

    Article  Google Scholar 

  15. LEE D S, JEON C O, PARK J M, CHANG K S. Hybrid neural network modeling of a full-scale industrial wastewater treatment process [J]. Biotechnology and Bioengineering, 2002, 78(6): 670–682.

    Article  Google Scholar 

  16. LEE D S, PARK J M. Neural network modeling for on-line estimation of nutrient dynamics in a sequentially-operated batch reactor [J]. Journal of Biotechnology, 1999, 75(2–3): 229–239.

    Article  Google Scholar 

  17. DE AZEVEDO S F, DAHM B, OLIVEIRA F R. Hybrid modelling of biochemical processes: A comparison with the conventional approach [J]. Computers Chem Engng, 1997, 21: S751–S756.

    Article  Google Scholar 

  18. LITH P F, BETLEM B H L, ROFFEL B. A structured modeling approach for dynamic hybrid fuzzy-first principles models [J]. Journal of Process Control, 2002, 12(5): 605–615.

    Article  Google Scholar 

  19. SCHENK M, GANI R, BOGLE D, PISTIKOPOULOS E N. Pistikopoulos, a hybrid modelling approach for separation systems involving distillation [J]. Trans Chem Eng Res Des, 1999, 77(6): 519–535.

    Article  Google Scholar 

  20. PSICHOGIOS D C, UNGAR L H. A hybrid neural network-first principles approach to process modeling [J]. AIChE Journal, 1992, 38(10): 1499–1511.

    Article  Google Scholar 

  21. VERIKAS A, BACAUSKIENE M. Using artificial neural networks for process and system modeling [J]. Chemometrics and Intelligent Laboratory Systems, 2003, 67(2): 187–191.

    Article  Google Scholar 

  22. GRIMA M A, BRUINES P A, VERHOEF P N W. Modeling tunnel boring machine performance by neuro-fuzzy methods [J]. Tunnelling and Underground Space Technology, 2000, 15(3): 259–269.

    Article  Google Scholar 

  23. GAJEWSKI J, JONAK J. Towards the identification of worn picks on cutterdrums based on torque and power signals using artificial neural networks [J]. Tunnelling and Underground Space Technology, 2011, 26(1): 22–28.

    Article  Google Scholar 

  24. WARNES M R, GLASSEY J, MONTAGUE G A, KARAB B. On data-based modelling techniques for fermentation processes [J]. Process Biochemistry, 1996, 31(2): 147–155.

    Article  Google Scholar 

  25. ANAGNOSTOU G, KOVAR K. Face stability conditions with earth-pressure-balanced shields [J]. Tunnelling and Underground Space Technology, 1996, 11(2): 165–173.

    Article  Google Scholar 

  26. KIM S H, TONON F. Face stability and required support pressure for TBM driven tunnels with ideal face membrane-drained case [J]. Tunnelling and Underground Space Technology, 2010, 25(5): 526–542.

    Article  Google Scholar 

  27. LI S J, CAO L J, SHANGGUAN Z C, LIU B. Parameter identification and pressure control of dynamic system in shield tunneling using least squares method [J]. Journal of Coal Science & Engineering, 2010, 16(3): 256–261.

    Article  Google Scholar 

  28. LI S J, LIU Y X. Identification of vibration loads on hydro generator by using hybrid genetic algorithm [J]. Acta Mechanica Sinica, 2006, 22(6): 603–610.

    Article  MATH  Google Scholar 

  29. PALIWAL M, KUMAR U A. Neural networks and statistical techniques: A review of applications [J]. Expert Systems with Applications, 2009, 36(1): 2–17.

    Article  Google Scholar 

  30. WAN W S, MABU S, SHIMADA K, HIRASAWA K, HU J L. Enhancing the generalization ability of neural networks through controlling the hidden layers [J]. Applied Soft Computing, 2009, 9(1): 404–414.

    Article  Google Scholar 

  31. WU S T, CHOW T W S. Self-organizing and self-evolving neurons: A new neural network for optimization [J]. IEEE Transactions on Neural Networks, 2007, 18(2): 385–396.

    Article  Google Scholar 

  32. PEILA D, OGGERI C, VINAI R. Screw conveyor device for laboratory tests on conditioned soil for EPB tunneling operations [J]. Journal of Geotechnical and Environmental Engineering, 2007, 133(12): 1622–1625.

    Article  Google Scholar 

  33. MERRITT A S, MAIR R J. Mechanics of tunnelling machine screw conveyors: Model tests [J]. Geotechnique, 2006, 56(9): 605–615.

    Article  Google Scholar 

  34. QUEBAUD S, SIBAI M, HENRY J P. Use of chemical foam for improvements in drilling by earth pressure balanced shields in granular soils [J]. Tunnelling and Underground Space Technology, 1998, 13(2): 173–180.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen Yu  (于申).

Additional information

Foundation item: Project(2013CB035402) supported by the National Basic Research Program of China; Projects(51105048, 51209028) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Sj., Yu, S. & Qu, Fz. Modeling approaches to pressure balance dynamic system in shield tunneling. J. Cent. South Univ. 21, 1206–1216 (2014). https://doi.org/10.1007/s11771-014-2055-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-014-2055-8

Key words

Navigation