Skip to main content
Log in

Limit analysis of vertical anti-pulling screw pile group under inclined loading on 3D elastic-plastic finite element strength reduction method

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

Based on the functional theory, catastrophe theory, simultaneity principle and the idea of strength reduction method (SRM), the bearing capacity functional and SRM of pile group foundation were established, and the criteria of ultimate load and the concept of safety storage coefficient (C SS) were advanced. The inclined ultimate loads by the static loading test, load increment method (LIM) and SRM are compared. Theoretically, the ultimate load of piles does not change with the loading levels when it is calculated by SRM. When the one strength reduction parameter is applied in the calculation boundary, there are calculating errors because the bearing capacity action of soils happened in the finite zone. The inclined loadings are 108, 132 and 144 kN, and SSC are 1.07, 0.94 and 0.79, respectively, so the calculation values of ultimate loads are about 115.56, 124.08 and 113.76 kN, respectively. The error between calculations and observation values is less than 6%. But the error between calculations of LIM and observations is 20%. Because of the effect of inclined loading, the push-rotation phenomenon of screw pile group appears. Under this testing, the ultimate bearing capacity of piles is mostly determined by the horizontal ultimate bearing capacity, and the effect of the vertical component of inclined load should also be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ZIENKIEWICZ O C, HUMPHESON C, LEWIS R W. Associated and nonassociated visco-plasticity and plasticity in soil mechanics [J]. Geotechnique, 1975, 25(4): 671–689.

    Article  Google Scholar 

  2. GRIFFITHS D V. Finite element analyses of walls footings and slopes [C]// RANDOLPH M F, Ed. Symp Comp Appl Geotech Prob Highway Eng. Cambridge, UK: PM Geotech Analysts Ltd, 1980: 122–146.

    Google Scholar 

  3. MATSUI T, SAN K C. Finite element slope stability analysis by shear strength reduction technique [J]. Soils Found, 1992, 32(1): 59–70.

    Article  Google Scholar 

  4. UGAI K, LESHCHINSKY D. Three-dimensional limit equilibrium and finite element analysis: A comparison of result [J]. Soils Found, 1995, 35(4): 1–7.

    Article  Google Scholar 

  5. GRIFFITHS D V, LANE P A. Slope stability analysis by finite elements [J]. Geotechnique, 1999, 49(3): 387–403.

    Article  Google Scholar 

  6. HULL T S, POULOS H G. Discussion of design method for stabilization of slopes with piles [J]. Journal of Geotechnical and Geoenvironmental Engineering, 1999, 125(10): 910–914.

    Article  Google Scholar 

  7. CAI F, UGAI K. Numerical analysis of the stability of a slope reinforced with piles [J]. Japanese Geotechnical Society, 2000, 40(1): 73–84.

    Google Scholar 

  8. ZHENG Ying-ren, ZHAO Shang-yi, KONG Wei-xue, DENG Chu-jian. Geotechnical engineering limit analysis using finite element method [J]. Rock and Soil Mechanics, 2005, 26(1): 163–168. (in Chinese)

    Google Scholar 

  9. SCHWEIGER H F. Application of FEM to ULS design (Eurocodes) in surface and near surface geotechnical structures [C]// BARLA G, BARLA M, Ed. Proc 11th Int Conf Computer Methods and Advances in Geomechanics. Bologna: Patron Editore, 2005: 419–430.

    Google Scholar 

  10. GRIFFITHS D V, HANG Lin, PING Cao. A comparison of numerical algorithms in the analysis of pile reinforced slopes [C]// FRATTA D, Ed. Proc Geo Florida 2010: Advances in Analysis, Modeling and Design. ASCE GSP (CD-ROM), 2010: 175–183.

    Google Scholar 

  11. ZHENG Ying-ren, QIU Chen-yu, ZHANG Hong, WANG Qian-yuan. Exploration of stability analysis methods for surrounding rocks of soil tunnel [J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(10): 1968–1980. (in Chinese)

    Google Scholar 

  12. RACANSKY V, SCHWEIGER H F, THURNER R. FE-analysis of the behaviour of buttressed jet grouted retaining walls [C]// The 12th International Conference of International Association for Computer Methods and Advances in Geomechanics. Goa, India, 2008: 3984–3992.

    Google Scholar 

  13. POULOS H G. Analysis of piles in soil undergoing lateral movement [J]. Journal of the Soil Mechanics and Foundations Division, 1973, 99(5): 391–406.

    Google Scholar 

  14. MENDONCA A V, PAIVA J B. An elastostatic FEM/BEM analysis of vertically loaded raft and piled raft foundation [J]. Engineering Analysis with Boundary Elements, 2003, 27(9): 919–933.

    Article  MATH  Google Scholar 

  15. BRANSBY M F, SPRINGMAN S. Selection of load-transfer functions for passive lateral loading of pile groups [J]. Computers and Geotechnics, 1999, 24(3): 155–184.

    Article  Google Scholar 

  16. COMODROMOS E M, ANAGNOSTOPOULOS C T, GEORGIADIS M K. Numerical assessment of axial pile group response based on load test [J]. Computers and Geotechnics, 2003, 30(6): 505–515.

    Article  Google Scholar 

  17. JEONG S, LEE J, LEE C J. Slip elect at the pile-soil interface on drag load [J]. Computers and Geotechnics, 2004, 31(2): 115–126.

    Article  Google Scholar 

  18. HANNA A, RAHMAN F, AYADAT T. Passive earth pressure on embedded vertical plate anchors in sand [J]. Acta Geotechnica, 2011, 6(1): 21–29.

    Article  Google Scholar 

  19. ARNOD V I. Catastrophe theory [M]. YAN Ha, Transl. Beijing: Higher Education Press, 1990: 2–12. (in Chinese)

  20. JGJ-94-94, technical code for building pile foundation [S]. Beijing: China Architecture & Building Press, 1995. (in Chinese)

  21. XU Gan-cheng, ZHENG Ying-ren. Study on the application of yield criteria in the geotechnical engineering [J]. Chinese Journal of Geotechnical Engineering, 1990, 12(2): 93–99. (in Chinese)

    MathSciNet  Google Scholar 

  22. Liaoning Electric and Reconnaissance Research. Testing and research of screw-anchor [R]. Shenyang: Liaoning Electric and Reconnaissance Research, 2002. (in Chinese)

    Google Scholar 

  23. DONG Tian-wen, ZHANG Ya-jun, LI Shi-wei, HUNG Lian-zhuang. Bearing capacity of screw pile group determined by inclined pull-out test [J]. Chinese Journal of Geotechnical Engineering, 2008, 30(3): 429–433. (in Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tian-wen Dong  (董天文).

Additional information

Foundation item: Project(51178457) supported by the National Natural Science Foundation of China; Project(cstc2012jjys0001) supported by the Natural Science Foundation of Chongqing, China; Project(L2011231) supported by the Liaoning Education Department, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dong, Tw., Zheng, Yr. Limit analysis of vertical anti-pulling screw pile group under inclined loading on 3D elastic-plastic finite element strength reduction method. J. Cent. South Univ. 21, 1165–1175 (2014). https://doi.org/10.1007/s11771-014-2050-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-014-2050-0

Key words

Navigation