Skip to main content
Log in

Hyperchaos behaviors and chaos synchronization of two unidirectional coupled simplified Lorenz systems

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

To design a hyperchaotic generator and apply chaos into secure communication, a linear unidirectional coupling control is applied to two identical simplified Lorenz systems. The dynamical evolution process of the coupled system is investigated with variations of the system parameter and coupling coefficients. Particularly, the influence of coupling strength on dynamics of the coupled system is analyzed in detail. The range of the coupling strength in which the coupled system can generate hyperchaos or realize synchronization is determined, including phase portraits, Lyapunov exponents, and Poincaré section. And the critical value of the system parameter between hyperchaos and synchronization is also found with fixed coupled strength. In addition, abundant dynamical behaviors such as four-wing hyperchaotic, two-wing chaotic, single-wing coexisting attractors and periodic orbits are observed and chaos synchronization error curves are also drawn by varying system parameter c. Numerical simulations are implemented to verify the results of these investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. PECORA M, CARROLL T L. Synchronization in chaotic systems [J]. Phys Rev Lett, 1990, 64(8): 821–824.

    Article  MATH  MathSciNet  Google Scholar 

  2. SHEN Li-qun, WANG Mao, LIU Wan-yu, SUN Guan-hui. Prediction based chaos control via a new neural network [J]. Phys Lett A, 2008, 372(46): 6916–6921.

    Article  MATH  Google Scholar 

  3. VINCENT U E, GUO Rong-wei. Finite-time synchronization for a class of chaotic and hyperchaotic systems via adaptive feedback controller [J]. Phys Lett A, 2011, 375(24): 2322–2326.

    Article  MATH  MathSciNet  Google Scholar 

  4. YE Guo-dong. Image scrambling encryption algorithm of pixel bit based on chaos map [J]. Pattern Recognition Letters, 2010, 31(5): 347–354.

    Article  Google Scholar 

  5. GRZYBOWSKI J M V, RAFIKOV M, BALTHAZAR J M. Synchronization of the unified chaotic system and application in secure communication [J]. Communication Nonlinear Science Numerical Simulation, 2009, 14(6): 2793–2806.

    Article  MATH  MathSciNet  Google Scholar 

  6. RÖSSLER O E. An equation for hyperchaos [J]. Phys Lett A, 1979, 71(2/3): 155–157.

    Article  MATH  MathSciNet  Google Scholar 

  7. WANG Fan-zhen, Chen Zeng-qiang, Wu Wen-juan, YUAN Zhu-zhi. A novel hyperchaos evolved from three dimensional modified Lorenz chaotic system [J]. Chin Phys B, 2007, 16(11): 3238–3243.

    Article  Google Scholar 

  8. CHEN Zeng-qiang, YANG Yong, QI Guo-yuan, YUAN Zhu-zhi. A novel hyperchaos system only with one equilibrium [J]. Phys Lett A, 2007, 360(5): 696–701.

    Article  MathSciNet  Google Scholar 

  9. GAO Tie-gang, CHEN Guang-rong, CHEN Zeng-qiang, CANG Shi-jian. The generation and circuit implementation of a new hyperchaos based upon Lorenz system [J]. Phys Lett A, 2007, 361(1/2): 78–86.

    Article  MATH  Google Scholar 

  10. PANG Shou-quan, LIU Yong-jian. A new hyperchaotic system from the Lü system and its control [J]. Journal of Computational and Applied Mathematics, 2011, 235(8): 2775–15.

    Article  MATH  MathSciNet  Google Scholar 

  11. NIU Yu-jun, WANG Xing-yuan, WANG Ming-jun, ZHANG Hua-guang. A new hyperchaotic system and its circuit implementation [J]. Communication Nonlinear Science Numerical Simulation, 2010, 15(11): 3518–3524.

    Article  Google Scholar 

  12. LI Yu-xia, CHEN Guan-rong, TANG W K S. Controlling a unified chaotic system to hyperchaotic [J]. Circuits and Systems II: Express Briefs, IEEE Transactions on, 2005, 52(4): 204–207.

    Article  Google Scholar 

  13. TAM L M, CHEN H J, CHEN H K, SI TOU Wai-meng. Generation of hyperchaos from the Chen-Lee system via sinusoidal perturbation [J]. Chaos Solitons & Fractals, 2008, 38(3): 826–839.

    Article  Google Scholar 

  14. WU Xiao-qun, LU Jun-an, IU H H C, WONG Siu-chuag. Suppression and generation of chaos for a three-dimensional autonomous system using parametric perturbations [J]. Chaos Solitons & Fractals, 2007, 31(4): 499–503.

    Article  Google Scholar 

  15. RECH P C. Chaos control in a discrete time system through asymmetric coupling [J]. Phys Lett A, 2008, 372(24): 4434–4440.

    Article  MATH  Google Scholar 

  16. OLUSOLA O I, VINCENT U E, NJAH A N. Synchronization, multistability and basin crisis in coupled pendula [J]. Journal of Sound and Vibration, 2010, 329(14): 443–456.

    Article  Google Scholar 

  17. CHEN Zhang-yao, BI Qin-sheng. Bifurcations and chaos of coupled Jerk systems [J]. Acta Phys Sin, 2010, 59(11): 7669–7678. (in Chinese)

    MATH  Google Scholar 

  18. GRASSI G, SEVERANCE F L, MILLER D A. Multi-wing hyperchaotic attractors from coupled Lorenz systems [J]. Chaos Solitons & Fractals, 2009, 41(1): 284–291.

    Article  MATH  Google Scholar 

  19. MAHMOUD E E. Dynamics and synchronization of new hyperchaotic complex Lorenz system [J]. Mathematical and Computer Modelling, 2012, 55(7/8): 1951–1962.

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhao Jia-kun. Adaptive Q-S synchronization between coupled chaotic systems with stochastic perturbation and delay [J]. Applied Mathematical Modelling, 2012, 36(7): 3306–3313.

    Google Scholar 

  21. YUAN Zhi-ling, XU Zhen-yuan, GUO Liu-xiao. Generalized synchronization of two bidirectionally coupled discrete dynamical systems [J]. Communication Nonlinear Science Numerical Simulation, 2012, 17(2): 992–1002.

    Article  MATH  MathSciNet  Google Scholar 

  22. DUAN Zhi-sheng, CHEN Guan-rong. Global robust stability and synchronization of networks with Lorenz-type nodes [J]. IEEE Transactions on Circuits and Systems-II, 2009, 56(8): 569–573.

    MathSciNet  Google Scholar 

  23. DUAN Zhi-sheng, CHEN Guan-rong, HUANG Lin. Disconnected synchronized regions of complex dynamical networks [J]. IEEE Transactions on Automatic Control, 2009, 54(4): 845–849.

    Article  MathSciNet  Google Scholar 

  24. SUN Ke-hui, SPROTT J C. Dynamics of a simplified Lorenz system [J]. International Journal of Bifurcation and Chaos, 2009, 19(4): 1357–1366.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-hui Sun  (孙克辉).

Additional information

Foundation item: Projects(61073187, 61161006) supported by the National Nature Science Foundation of China; Project supported by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Kh., Wang, Y. & Wang, Yl. Hyperchaos behaviors and chaos synchronization of two unidirectional coupled simplified Lorenz systems. J. Cent. South Univ. 21, 948–955 (2014). https://doi.org/10.1007/s11771-014-2023-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-014-2023-3

Key words

Navigation