Skip to main content
Log in

Dynamic response of cylindrical cavity to anti-plane impact load by using analytical approach

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The transient response of an unlimited cylindrical cavity buried in the infinite elastic soil subjected to an anti-plane impact load along the cavern axis direction was studied. Using Laplace transform combining with contour integral of the Laplace inverse transform specifically, the general analytical expressions of the soil displacement and stress are obtained in the time domain, respectively. And the numerical solutions of the problem computed by analytical expressions are presented. In the time domain, the dynamic responses of the infinite elastic soil are analyzed, and the calculation results are compared with those from numerical inversion proposed by Durbin and the static results. One observes good agreement between analytical and numerical inversion results, lending the further support to the method presented. Finally, some valuable shear wave propagation laws are gained: the displacement of the soil remains zero before the wave arrival, and after the shear wave arrival, the stress and the displacement at this point increase abruptly, then reduce and tend to the static value gradually at last. The wave attenuates along the radial, therefore the farther the wave is from the source, the smaller the stress and the displacement are, and the stress and the displacement are just functions of the radial distance from the axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. HAYWOOD J H. Response of an elastic cylindrical shell to a pressure pulse [J]. Journal of Mechanics and Applied Mathematics, 1958, 11(2): 130–140.

    Article  MathSciNet  Google Scholar 

  2. PAO Yih-hsing, MOW C C. Diffraction of elastic waves and dynamic stress concentrations [M]. US: Adam Hillier Ltd, 1973: 120–131.

    Google Scholar 

  3. LEE J K, MAL A K. A volume integral equation technique for multiple scattering problems in elastodynamics [J]. Applied Mathematics and Computation, 1995, 67(1/2/3): 135–159.

    Article  MATH  MathSciNet  Google Scholar 

  4. DAVIS C A, LEE V W, BARDET J P. Transverse response of underground cavities and pipes to incident SV waves [J]. Earthquake Engineering and Structural Dynamics, 2001, 30(3): 395–410.

    Article  Google Scholar 

  5. IAKOVLEV S. Interaction of a spherical shock wave and a submerged fluid-filled circular cylindrical shell [J]. Journal of Sound and Vibration, 2002, 255(4): 615–633.

    Article  MATH  Google Scholar 

  6. MANOLIS G D. Elastic wave scattering around cavities in inhomogeneous continua by the BEM [J]. Journal of Sound and Vibration, 2003, 266(2): 281–305.

    Article  MATH  Google Scholar 

  7. FANG Xue-qian, HU Chao, HUANG Wen-hu. Dynamic stress of a circular cavity buried in a semi-infinite functionally graded piezoelectric material subjected to shear waves [J]. European Journal of Mechanics A/Solids, 2007, 26(6): 1016–1028.

    Article  MATH  Google Scholar 

  8. OHTAKI H, KOTOSAKA S, NAGASAKA Y. Deriving the dynamic stress function using complex function and its application to the analysis of the stress distribution around an elliptical hole [J]. International Journal of Engineering Science, 2008, 46(1): 66–85.

    Article  MATH  MathSciNet  Google Scholar 

  9. JIANG Ling-fa, ZHOU Xiang-lian, WANG Jian-hua. Scattering of a plane wave by a lined cylindrical cavity in a poroelastic half-plane [J]. Computers and Geotechnics, 2009, 36(5): 773–786.

    Article  Google Scholar 

  10. SMERZINI C, AVILES J, PAOLUCC R, SANCHEZ-SESMA F J. Effect of underground cavities on surface earthquake ground motion under SH wave propagation [J]. Earthquake Engineering and Structural Dynamics, 2009, 38(12): 1441–1460.

    Article  Google Scholar 

  11. LIN Chi-hsin, LEE V W, TODOROVSKA M I, TRIFUNAC M D. Zero-stress, cylindrical wave functions around a circular underground tunnel in a flat, elastic half-space: Incident P-waves [J]. Soil Dynamics and Earthquake Engineering, 2010, 30(10): 879–894.

    Article  Google Scholar 

  12. MIKLOWITZ J. Plane-stress unloading waves emanating from a suddenly punched hole in a stretched elastic plate [J]. Journal of Applied Mechanics, 1960, 27(1): 165–171.

    Article  MATH  MathSciNet  Google Scholar 

  13. EASON G. Propagation of waves from spherical and cylindrical cavities [J]. ZAMP, 1963, 14(1): 12–22.

    Article  MATH  MathSciNet  Google Scholar 

  14. HERMAN H, KLOSNER J M. Transient response of a periodically supported cylindrical shell immersed in a fluid medium [J]. Journal of Applied Mechanics, 1965, 32(3): 562–568.

    Article  Google Scholar 

  15. GEERS T L. Excitation of an elastic cylindrical shell by a transient acoustic wave [J]. Journal of Applied Mechanics, 1969, 36(3): 459–469.

    Article  MATH  Google Scholar 

  16. FORRESTAL M J, SAGARTZ M J. Radiated pressure in an acoustic medium produced by pulsed cylindrical and spherical shells [J]. Journal of Applied Mechanics, 1971, 38(4): 1057–1060.

    Article  Google Scholar 

  17. EASON G. The propagation of waves from a cylindrical cavity [J]. Journal of Composite Materials, 1973, 7: 90–99.

    Article  Google Scholar 

  18. DUFFEY T A. Transient Response of viscoplastic and viscoelastic shells submerged in fluid media [J]. Journal of Applied Mechanics, 1976, 43(1): 137–143.

    Article  Google Scholar 

  19. MOODIE T B, BARCLAY D W. Wave propagation from a cylindrical cavity [J]. Acta Mechanica, 1977, 27(1/2/3/4): 103–120.

    Article  MATH  MathSciNet  Google Scholar 

  20. MOODIE T B, HADDOW J B, MIODUCHOWSKI A, TAIT R J. Plane elastic waves generated by dynamical loading applied to edge of circular hole [J]. Journal of Applied Mechanics, 1981, 48(3): 577–581.

    Article  MATH  Google Scholar 

  21. WATANABE K. Transient response of an inhomogeneous elastic solid to an impulsive SH-wave [J]. The Japan Society of Mechanical Engineers, 1982, 25(201): 315–319.

    Article  Google Scholar 

  22. GLENN L A, KIDDER R E. Blast loading of a spherical container surrounded by an infinite elastic medium [J]. Journal of Applied Mechanics, 1983, 50(4): 723–726.

    Article  Google Scholar 

  23. AKKAS N, ERDOGOGAN F. The residual variable method applied to the diffusion equation in cylindrical coordinates [J]. ACTA Mechanic, 1989, 79(3/4): 207–219.

    Article  MATH  Google Scholar 

  24. ZHANG Qing-yuan, ZHAN Ren-rui. Dynamic response of a spherical cavity subjected to blast loads [J]. Explosion and Shock Wave, 1994, 14(2): 182–185. (in Chinese)

    MathSciNet  Google Scholar 

  25. LIU Guo-li, ZHAO Hui-bin, XU Yi-yan. Transient response of semi-circular canyon under step SH wave-long term solution [J]. Earthquake Engineering and Engineering Vibration, 1995, 15(1): 92–99. (in Chinese)

    Google Scholar 

  26. YANG Jun, GONG Qun-mei, WU Shin-ming. Dynamic analysis of cylindrical holes in saturated soil [J]. Shanghai Mechanics, 1996, 17(1): 37–45. (in Chinese)

    Google Scholar 

  27. ZAKOUT U, AKKAS N. Transient response of a cylindrical cavity with and without a bonded shell in an infinite elastic medium [J]. International Journal of Engineering Science, 1997, 35(12/13): 1203–1220.

    Article  MATH  Google Scholar 

  28. LI X. Stress and displacement fields around a deep circular tunnel with partial sealing [J]. Computers and Geotechnics, 1999, 24(2): 125–140.

    Article  Google Scholar 

  29. LI X, FLORES-BERRONES R. Time-dependent behavior of partially sealed circular tunnels [J]. Computers and Geotechnics, 2002, 29(6): 433–449.

    Article  Google Scholar 

  30. HADDOW J B, JIANG Lei. Finite amplitude elastic waves due to non-uniform traction at the surface of a cylindrical cavity [J]. International Journal of Non-linear Mechanics, 2006, 41(2): 231–241.

    Article  Google Scholar 

  31. FELDGUN V R, KOCHETKOV A V, KARINSKI Y S, YANKELEVSKY D Z. Internal blast loading in a buried lined tunnel [J]. International Journal of Impact Engineering, 2008, 35(3): 172–183.

    Article  Google Scholar 

  32. FELDGUN V R, KOCHETKOV A V, KARINSKI Y S, YANKELEVSKY D Z. Blast response of a lined cavity in a porous saturated soil [J]. International Journal of Impact Engineering, 2008, 35(9): 953–966.

    Article  Google Scholar 

  33. IAKOVLEV S. Interaction between a submerged evacuated cylindrical shell and a shock wave-Part I: Diffraction-radiation analysis [J]. Journal of Fluids and Structures, 2008, 24(7): 1077–1097.

    Article  Google Scholar 

  34. IAKOVLEV S. Interaction between a submerged evacuated cylindrical shell and a shock wave-Part II: Numerical aspects of the solution [J]. Journal of Fluids and Structures, 2008, 24(7): 1098–1119.

    Article  Google Scholar 

  35. GAO Meng, GAO Guang-yun, WANG Ying, YANG Cheng-bin, XIONG Hao. Dynamic solutions of cylindrical cavities with the lining under internal load in the saturated soil [J]. Chinese Journal of Solid Mechanics, 2009, 30(5): 481–487. (in Chinese)

    Google Scholar 

  36. GAO Meng, GAO Guang-yun, WANG Ying, XIONG Hao. Solution on dynamic response of a cylindrical cavity under internal load [J]. Chinese Quarterly of Mechanics, 2009, 30(2): 266–272. (in Chinese)

    Google Scholar 

  37. GIANNOPOULOS G, LARCHER M, CASADEI F, SOLOMOS G. Risk assessment of the fatality due to explosion in land mass transport infrastructure by fast transient dynamic analysis [J]. Journal of Hazardous Materials, 2010, 173(1/2/3): 401–408.

    Article  Google Scholar 

  38. CAI Yuan-qiang, CHEN Cheng-zhen, SUN Hong-lei. Dynamic response of tunnel in viscoelastic saturated soil subjected to blast loads [J]. Journal of Zhejiang University (Engineering Science), 2011, 45(9): 1657–1663. (in Chinese)

    Google Scholar 

  39. HE Wei, CHEN Jian-yun, GUO Jing. Dynamic analysis of subway station subjected to internal blast loading [J]. Journal Central South University of Technology, 2011, 18(3): 917–924.

    Article  Google Scholar 

  40. HADDOW J B, LORIMER S A, TAIT R J. Nonlinear axial shear wave propagation in a hyperelastic incompressible solid [J]. Acta Mechanica, 1987, 66(1/2/3/4): 205–216.

    Article  MATH  Google Scholar 

  41. WATANABE K, PAYTON R G.. SH wave in a cylindrically anisotropic elastic solid a general solution for a point source [J]. Wave Motion, 1996, 25(2): 197–212.

    Article  MathSciNet  Google Scholar 

  42. BARCLAY D W. Wavefront expansion for nonlinear axial shear wave propagation [J]. International Journal of Non-linear Mechanics, 1998, 33(2): 259–274.

    Article  MATH  MathSciNet  Google Scholar 

  43. BARCLAY D W. Shock front analysis for axial shear wave propagation in a hyperelastic incompressible solid [J]. International Journal of Non-linear Mechanics, 1999, 133(1/2/3/4): 105–129.

    MATH  MathSciNet  Google Scholar 

  44. BARCLAY D W. Shock calculations for axially symmetric shear wave propagation in a hyperelastic incompressible solid [J]. International Journal of Non-linear Mechanics, 2004, 39(1): 101–121.

    Article  MATH  MathSciNet  Google Scholar 

  45. HADDOW J B, JIANG L. Finite amplitude azimuthal shear waves in a compressible hyperelastic solid [J]. Journal of Applied Mechanics, 2001, 68(2): 145–152.

    Article  MATH  Google Scholar 

  46. BARCLAY D W. The propagation and reflection of finite amplitude cylindrically symmetric shear waves in a hyperelastic incompressible solid [J]. Acta Mechanica, 2007, 193(1/2): 17–42.

    Article  MATH  Google Scholar 

  47. PAYTON R G. Diffraction in a cylindrically orthotropic elastic solid containing a stress free crack [J]. Z Angew Math Phys, 2007, 58(5): 876–888.

    Article  MATH  MathSciNet  Google Scholar 

  48. DAROS C H. A fundamental solution for SH-waves in a class of inhomogeneous anisotropic media [J]. International Journal of Engineering Science, 2008, 46(8): 809–817.

    Article  MATH  MathSciNet  Google Scholar 

  49. DURBIN F. Numerical inversion of Laplace transformation: An efficient improvement to durbin and abatep’s method [J]. The Computer Journal, 1974, 17(4): 371–376.

    Article  MATH  MathSciNet  Google Scholar 

  50. LIANG Kun-miao. Methods of mathematics and physics [M]. Beijing: Higher Education Press, 2010: 355–361. (in Chinese)

    Google Scholar 

  51. WATSON G N. Theory of bessel function [M]. England: Cambridge University Press, 1995: 215–221.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-jiao Zhai  (翟朝娇).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhai, Cj., Xia, Td., Du, Gq. et al. Dynamic response of cylindrical cavity to anti-plane impact load by using analytical approach. J. Cent. South Univ. 21, 405–415 (2014). https://doi.org/10.1007/s11771-014-1954-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-014-1954-z

Key words

Navigation