Skip to main content
Log in

Mechanical, piezoelectric and some thermal properties of (B3) BP under pressure

  • Published:
Journal of Central South University Aims and scope Submit manuscript

An Erratum to this article was published on 17 October 2014

Abstract

Some compounds of group III–V semiconductor materials exhibit very good piezoelectric, mechanical, and thermal properties and their use in surface acoustic wave (SAW) devices operating specially at GHz frequencies. These materials have been appreciated for a long time due to their high acoustic velocities, which are important parameters for active microelectromechanical systems (MEMS) devices. For this object, first-principles calculations of the anisotropy and the hydrostatic pressure effect on the mechanical, piezoelectric and some thermal properties of the (B3) boron phosphide are presented, using the density functional perturbation theory (DFPT). The independent elastic and compliance constants, the Reuss modulus, Voigt modulus, and the shear modulus, the Kleinman parameter, the Cauchy and Born coefficients, the elastic modulus, and the Poisson ratio for directions within the important crystallographic planes of this compound under pressure are obtained. The direct and converse piezoelectric coefficients, the longitudinal, transverse, and average sound velocity, the Debye temperature, and the Debye frequency of (B3) boron phosphide under pressure are also presented and compared with available experimental and theoretical data of the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FABER S K T, MALLOY J K. The mechanical properties of semiconductors, semiconductors and semimetals [M]. New York: Academic Press, Inc, 1992: IV.

    Google Scholar 

  2. ADACHI Sadao. Physical properties of III-V semiconductor compounds [M]. New York: John Wiley & Sons, 1992: 20–26.

    Book  Google Scholar 

  3. WEBER M J. Handbook of optical materials [M]. New York: C RC Press LLC, 2003.

    Google Scholar 

  4. BARONI S, GIANNOZZI P, TESTA A. Green’s function approach to linear response in solids [J]. Phys Rev, 1987, 58(18): 1861–1864.

    Google Scholar 

  5. GIANNOZZI P, DE GIRONCOLI S, PAVONE P, BARONIS. Ab-initio calculation of phonon dispersions in semiconductors [J]. Phys Rev B, 1991, 43: 7231–7242.

    Article  Google Scholar 

  6. GONZE X, BEUKEN J M, CARACAS R, DETRAUX F, FUCHS M, RIGNANESE GM, SINDIC L, VERSTRAETE M, ZERAH G, JOLLET F, TORRENT M, ROY A, MIKAMI M, GHOSEZ P H, RATY J Y, ALLAN D C. First-principles computation of material properties: The ABINIT software project [J]. Comp Mat Sci, 2002, 25: 478–492.

    Article  Google Scholar 

  7. GONZE X, RIGNANESE G M, VERSTRAETE M, BEUKEN J M, POUILLON Y, CARACAS R, JOLLET F, TORRENT M, ZERAH G, MIKAMI M, GHOSEZ P H, VEITHEN M, RATY J Y, OLEVANO V, BRUNEVAL F, REINING L, GODBY R, ONIDA G, HAMANN D R, ALLAN D C. A brief introduction to the ABINIT software package [J]. Z Kristallogr, 2005, 220: 558–562.

    Google Scholar 

  8. GOEDECKER S. Fast Radix 2, 3, 4, and 5 kernels for fast Fourier transformations on computers with overlapping multiply-add instructions [J]. SIAM J Sci Comput, 1997, 18: 1605–1611.

    Article  MathSciNet  MATH  Google Scholar 

  9. GOEDECKER S, TETER M, HUETTER J. Separable dual-space gaussian pseudopotentials [J]. Phys Rev B, 1996, 54: 1703–1710.

    Article  Google Scholar 

  10. TROULLIER N, MARTINS J L. Efficient pseudopotentials for plane-wave calculations [J]. Phys Rev B, 1991, 43: 1993–2006

    Article  Google Scholar 

  11. MONKHORST H J, PACK J D. Special points for Brillouin-zone integrations [J]. Phys Rev B, 1976, 13(12): 5188–5192.

    Article  MathSciNet  Google Scholar 

  12. DAOUD S, LOUCIF K, BIOUD N, LEBGAA N, BELAGRAA L. Effect of hydrostatic pressure on the structural, elastic and electronic properties of (B3) boron phosphide [J]. Pramana J Phys, 2012, 79(1): 95–106.

    Article  Google Scholar 

  13. NIELSEN O H, MARTIN R M. Stresses in semiconductors: Ab initio calculations on Si, Ge, and GaAs [J]. Phy Rev B, 1985, 32(6): 3792–3805.

    Article  Google Scholar 

  14. HAMMAN D R, WU X, RABE K M, VANDERBIL T D. Vanderbilt, Metric tensor formulation of strain in density functional perturbation theory [J]. Phys Rev B, 2005, 71(3): 035117.

    Article  Google Scholar 

  15. BENAMRANI A, KASSALI K, BOUAMAMA K h. Pseudopotential study of barium chalcogenides under hydrostatic pressure [J]. High Pressure Res, 2010, 30(1): 207–218.

    Article  Google Scholar 

  16. TROPF W J, THOMAS M F, HARRIS T J. Properties of crystals and glasses, Handbook of Optics [M]. New York: McGraw-Hill, 2004: 32.

    Google Scholar 

  17. ZHAO H, CHANG A, WANG Y. Structural, elastic, and electronic properties of cubic perovskite BaHfO3 obtained from first principles [J]. Physica B, 2009, 404: 2192–2196.

    Article  Google Scholar 

  18. BING L, FENG L R, YONG Y. Characterisation of the high pressure structural transition and elastic properties in boron arsenic, Chinese [J]. Phys B, 2010, 19(7): 076201.

    Google Scholar 

  19. DAOUD S, LOUCIF K, BIOUD N, LEBGAA N. First-principles study of structural, elastic and mechanical properties of zinc-blende boron nitride (B3-BN) [J]. Acta Phy Pol A, 2012, 122(1): 109–115.

    Google Scholar 

  20. NEWNHAM R E. Properties of materials: Anisotropy, symmetry, structure [M]. USA: Oxford University Press, 2005: 45–87.

    Google Scholar 

  21. YANG J. Special topics in the theory of piezoelectricity [M]. Berlin: Springer Science+Business Media, LLC, 2009: 193.

    Book  Google Scholar 

  22. KERRY D K. Semiconductors [M]. New York: Macmillan Publishing Company, 1991: 103.

    Google Scholar 

  23. WU X, VANDERBILT D, HAMANN D R. Systematic treatment of displacements, strains and electric fields in density-functional perturbation theory [J]. Phys Rev B, 2005, 72: 035105.

    Article  Google Scholar 

  24. BU G, CIPLYS D, SHUR M, SCHOWALTER L J, SCHUJMAN S, GASKA R. Electromechanical coupling coefficient for surface acoustic waves in single-crystal bulk aluminum nitride [J]. Appl Phys Lett, 2004, 84: 4611–4613.

    Article  Google Scholar 

  25. LIDE D R. Handbook of chemistry and physics [M]. 80th ed. Boca Raton: CRC Publication, 1999–2000.

    Google Scholar 

  26. STEIGMEIER E F. The Debye temperatures of III-V compounds [J]. Appl Phys Lett, 1963, 3(1): 6–8.

    Article  Google Scholar 

  27. MADELUNG O. Numerical data and functional relation-ships in science and technology-crystal and solid state physics [M]. Springer, Berlin: Landolt-Börnstein, 1972: 770.

    Google Scholar 

  28. NARAIN S. Analysis of the debye temperature for ANB8-N type ionic and partially covalent crystals [J]. Phys Status Solidi B, 1994, 182(2): 273–278.

    Article  Google Scholar 

  29. KUMAR V, JHA V, SHRIVASTAVA A K. Debye temperature and melting point of II-VI and III-V Semiconductors [J]. Cryst Res Technol, 2010, 45(9): 920–924

    Article  Google Scholar 

  30. SHINDÉ S L, GOELA J. High thermal conductivity materials [M]. New York: Springer, 2006: 40.

    Book  Google Scholar 

  31. ANDERSON O L. The Debye temperature of vitreous silica [J]. J Phys Chem Solids, 1959, 12(1): 41–52.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Daoud.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Daoud, S., Bioud, N. & Lebgaa, N. Mechanical, piezoelectric and some thermal properties of (B3) BP under pressure. J. Cent. South Univ. 21, 58–64 (2014). https://doi.org/10.1007/s11771-014-1915-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-014-1915-6

Key words

Navigation