Skip to main content
Log in

Adaptive robust motion trajectory tracking control of pneumatic cylinders

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

High-accuracy motion trajectory tracking control of a pneumatic cylinder driven by a proportional directional control valve was considered. A mathematical model of the system was developed firstly. Due to the time-varying friction force in the cylinder, unmodeled dynamics, and unknown disturbances, there exist large extent of parametric uncertainties and rather severe uncertain nonlinearities in the pneumatic system. To deal with these uncertainties effectively, an adaptive robust controller was constructed in this work. The proposed controller employs on-line recursive least squares estimation (RLSE) to reduce the extent of parametric uncertainties, and utilizes the sliding mode control method to attenuate the effects of parameter estimation errors, unmodeled dynamics and disturbances. Therefore, a prescribed motion tracking transient performance and final tracking accuracy can be guaranteed. Since the system model uncertainties are unmatched, the recursive backstepping design technology was applied. In order to solve the conflicts between the sliding mode control design and the adaptive control design, the projection mapping was used to condition the RLSE algorithm so that the parameter estimates are kept within a known bounded convex set. Extensive experimental results were presented to illustrate the excellent achievable performance of the proposed controller and performance robustness to the load variation and sudden disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BRUN X, BELGHARBI M, SESMAT S, SCAVARDA S. Control of an electropneumatic actuator: Comparison between some linear and non-linear control laws [J]. Proc IMechE, Part I, Journal of Systems and Control Engineering, 1999, 213(5):387–406.

    Article  Google Scholar 

  2. SITUM Z, PAVKOVIC D, NOVAKOVIC B. Servo pneumatic position control using fuzzy PID gain scheduling [J]. J Dyn Syst, Meas, Control, 2004, 126(2):376–387.

    Article  Google Scholar 

  3. TAGHIZADEH M, NAJAFI, F, GHAFFARI A. Multimodel PD-control of a pneumatic actuator under variable loads [J]. Int J Adv Manuf Technol, 2010, 48:655–662.

    Article  Google Scholar 

  4. LEE H K, CHOI G S, CHOI G H. A study on tracking position control pneumatic actuators [J]. Mechatronics, 2002, 12:813–831.

    Article  Google Scholar 

  5. KHAYATI K, BIGRAS P, DESSAINT L A. LuGre model-based friction compensation and positioning control for a pneumatic actuator using multi-objective output-feedback control via LMI optimization [J]. Mechatronics, 2009, 19:535–547.

    Article  Google Scholar 

  6. RICHARD E, SCAVARDA S. Comparison between linear and nonlinear control of an electropneumatic servodrive [J]. J Dyn Syst, Meas, Control, 1996, 118(2):245–252.

    Article  MATH  Google Scholar 

  7. WANG J, WANG D J D, MOORE P R, PU J. Modelling study, analysis and robust servocontrol of pneumatic cylinder actuator systems [J]. IEE Proc-Control Theory Appl., 2001, 148(1):35–42.

    Article  Google Scholar 

  8. XIANG F, WIKANDER J. Block-oriented approximate feedback linearization for control of pneumatic actuator systems [J]. Control Engineering Practice, 2004, 12:387–399.

    Article  Google Scholar 

  9. SCHULTE H, HAHN H. Fuzzy state feedback gain scheduling control of servo-pneumatic actuators [J]. Control Engineering Practice, 2004, 12:639–650.

    Article  Google Scholar 

  10. NING S, BONE G M. Experimental comparison of two pneumatic servo position control algorithms [C]// Proceedings of IEEE International Conference on Mechatronics and Automation. Niagara Falls, Canada, 2005:37–42.

    Google Scholar 

  11. GIRIN A, PLESTAN F, BRUN X, GLUMINEAU A. High-order sliding-mode controllers of an electropneumatic actuator: Application to an aeronautic benchmark [J]. IEEE Transactions on Control Systems Technology, 2009, 17(3):633–645.

    Article  Google Scholar 

  12. CHEN H M, CHEN Z Y, CHUNG M C. Implementation of an integral sliding model controller for a pneumatic cylinder position servo control system [C]// 2009 Fourth International Conference on Innovative Computing, Information and Control. Kaohsiung, Taiwan, 2009:552–555.

    Chapter  Google Scholar 

  13. RICHARDSON R, PLUMMER A R, BROWN M D. Self-tuning control of a low-friction pneumatic actuator under the influence of gravity [J]. IEEE Transactions on Control Systems Technology, 2001, 9(2):330–334.

    Article  Google Scholar 

  14. SMAOUI M, BRUN X, THOMASSET D. A study on tracking position control of an electropneumatic system using backstepping design [J]. Control Engineering Practice, 2006, 14:923–933.

    Article  Google Scholar 

  15. TSAI Y C, HUANG A C. Multiple-surface sliding controller design for pneumatic servo systems [J]. Mechatronics, 2008, 18:506–512.

    Article  Google Scholar 

  16. RAO Z, BONE G M. Nonlinear modeling and control of servo pneumatic actuators [J]. IEEE Transactions on Control Systems Technology, 2008, 16(3):562–569.

    Article  Google Scholar 

  17. CAMEIRO J F, ALMEIDA F G. A high-accuracy trajectory following controller for pneumatic devices [J]. Int J Adv Manuf Technol, 2012, 61(1/2/3/4):253–267.

    Google Scholar 

  18. MENG De-yuan, TAO Guo-liang, CHEN Jian-feng, BAN Wei. Modeling of a pneumatic system for high-accuracy position control [C]// International Conference on Fluid Power and Mechatronics, Beijing, China, 2011: 505–510.

    Google Scholar 

  19. YAO B. High performance adaptive robust control of nonlinear systems: A general framework and new schemes [C]// Proc of the 36th Conference on Decision and Control. San Diego. California USA, 1997:2489–2494.

    Google Scholar 

  20. YAO B, TOMIZUKA M. Adaptive robust control of SISO nonlinear systems in semi-strict feedback form [J]. Automatica, 1997, 33(5):893–890.

    Article  MATH  MathSciNet  Google Scholar 

  21. YAO B, BU F, REEDY J, CHIU G. Adaptive robust motion control of single-rod hydraulic actuators: theory and experiments [J]. IEEE/ASME Transactions on Mechatronics, 2000, 5(1):79–91.

    Article  Google Scholar 

  22. XU L, YAO B. Adaptive robust precision motion control of linear motors with negligible electrical dynamics: Theory and experiments [J]. IEEE/ASME Transactions on Mechatronics, 2001, 6(4):444–452.

    Article  Google Scholar 

  23. ZHU Xiao-cong, TAO Guo-liang, YAO B, CAO Jian. Adaptive robust posture control of a parallel manipulator driven by pneumatic muscles [J]. Automatica, 2008, 44(9):2248–2257.

    Article  MATH  MathSciNet  Google Scholar 

  24. ARMSTRONG B, DUPONT P, CANUDAS C. A survey of models, analysis tools and compensation methods for the control of machines with friction [J]. Automatica, 1994, 30(7):1083–1138.

    Article  MATH  Google Scholar 

  25. KAGAWA T, TOKASHIKI L R, FUJITA T. Influence of air temperature change on equilibrium velocity of pneumatic cylinders [J]. J Dyn Syst, Meas, Control, 2002, 124(2):336–341.

    Article  Google Scholar 

  26. CAMEIRO J F, ALMEIDA F G. Reduced-order thermodynamics models for servo-pneumatic actuator chambers: Proc IMechE (Part I) [J]. Journal of Systems and Control Engineering, 2006, 220(4):301–314.

    Google Scholar 

  27. GOODWIN G C, MAYNE D Q. A parameter estimation perspective of continuous time model reference adaptive control [J]. Automatica, 1987, 23(1):57–70.

    Article  MATH  MathSciNet  Google Scholar 

  28. YAO B. Integrated direct/indirect adaptive robust control of SISO nonlinear systems in semi-strict feedback form [C]// Proceedings of the American Control Conference. Denver, 2003:3020–3025.

    Google Scholar 

  29. LANDAU I D, LOZANO R, M’SAAD M. Adaptive control [M]. New York: Springer-Verlag, 1998:167–188.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-liang Tao  (陶国良).

Additional information

Foundation item: Projects(50775200, 50905156) supported by the National Natural Science Foundation of China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meng, Dy., Tao, Gl. & Zhu, Xc. Adaptive robust motion trajectory tracking control of pneumatic cylinders. J. Cent. South Univ. 20, 3445–3460 (2013). https://doi.org/10.1007/s11771-013-1869-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-013-1869-0

Key words

Navigation