Skip to main content
Log in

High permittivity and low dielectric loss analysis of lead free Sr1−x La x (Ti0.5Fe0.5)O3

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The structural and electrical properties of lead free Sr1−x La x (Ti0.5Fe0.5)O3 (SLTFO) prepared by standard solid state reaction technique were studied. The X-ray diffraction analysis confirmed the formation of a single-phase cubic perovskite structure. The compositional dependence of lattice constant, density and microstructural studies show that they vary significantly with La3+ content. When measured at 10 kHz, all the compositions of SLTFO at room temperature exhibit a high permittivity (about 104) and low dielectric loss (about 10−3). SLTFO also display minimum dielectric loss within the lower and higher limits of frequency, indicating that the samples are of good quality. It is concluded from the calculated ac conductivity that the conduction is due to mixed polarons hopping. The complex impedance plot exhibits a tendency of forming a single semicircular arc for all compositions, which implies a dominance of grain boundary resistance on the impedance. Impedance parameters were determined by fitting the experimental data with Cole-Cole empirical formula. The results of the present experiment indicate that the lead free SLTFO materials with higher permittivity and lower dielectric loss have possible practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FAN H, KIM H E. Effect of lead content on the structure and electrical properties of Pb((Zn1/3Nb2/3)0.5(Zr0.47Ti0.53)0.5)O3 ceramics [J]. Journal of American Ceramic Society, 2001, 84: 636–638.

    Article  Google Scholar 

  2. RAI R, SHARMA S, SONI N C, CHOUDHARY R N P. Investigation of structural and dielectric properties of (La, Fe)-doped PZT ceramics [J]. Physica B, 2006, 382: 252–256.

    Article  Google Scholar 

  3. RAI R, MISHRA S, SINGH N K. Effect of Fe and Mn doping at B-site of PLZT ceramics on dielectric properties [J]. Journal of Alloys and Compounds, 2009, 487: 494–498.

    Article  Google Scholar 

  4. PAN J S, ZHANG X W. Dielectric and ferroelectric properties of Pb(Ni1/3Nb2/3)O3-Pb(Zn1/3Nb2/3)O3-PbTiO3 ternary ceramics [J]. Material Science Engineering B, 2006, 127: 6–11.

    Article  Google Scholar 

  5. SHI J, YANG W. Piezoelectric and dielectric properties of CeO2-doped (Bi0.5Na0.5)0.94Ba0.06TiO3 lead-free ceramics [J]. Journal of Alloys and Compounds, 2009, 472: 267–270.

    Article  Google Scholar 

  6. WU J, XIAO D, WU B, WU W, ZHU J, YANG Z, WANG J. Sintering temperature-induced electrical properties of (Ba0.90Ca0.10) (Ti0.85Zr0.15)O3 lead-free ceramics [J]. Materials Research Bulletin, 2012, 47: 1281–1284.

    Article  Google Scholar 

  7. RAMIREZ A P, SUBRAMANIAN M A, GARDEL M, BLUMBERG G, LI D, VOGT T, SHAPIRO S M. Giant dielectric constant response in a copper-titanate [J]. Solid State Communication, 2000, 115: 217–220.

    Article  Google Scholar 

  8. WU J, NAN C W, LIN C W, DENG Y. Giant dielectric permittivity observed in Li and Ti doped NiO [J]. Physical Review Letter, 2002, 89: 217601–4.

    Article  Google Scholar 

  9. RODEWALD S, FLEIG J, MAIER J. Microcontact impedance spectroscopy at single grain boundaries in Fe-doped SrTiO3 polycrystals [J]. Journal of American Ceramic Society, 2001, 84: 521–530.

    Article  Google Scholar 

  10. WANG H C, WANG C L, SU W B, LIU J, SUN Y, PENG H, MEI L M. Doping effect of La and Dy on the thermoelectric properties of SrTiO3 [J]. Journal of American Ceramic Society, 2011, 94: 838–842.

    Article  Google Scholar 

  11. XU S, QU Y, YANG D. Structure, dielectric and electric properties of (Ba0.68−x Sr0.308Bi0.006Na0.006Mgx)(Ti0.99Sn0.01)O3 ceramics [J]. Journal of Alloys and Compounds, 2011, 509: 2753–2757.

    Article  Google Scholar 

  12. SINGH P, GAUTAM C R, SINGH S, KUMAR D, PARKASH O. Synthesis, structure and electrical conduction behaviour of the system Sr1−x NdxTi1−x MnxO3 (x<0.50) [C]// International Symposium of Research Students on Materials Science and Engineering (ISRS), Chennai, India, 2004: 1–9.

    Google Scholar 

  13. LI Y, QU Y. Dielectric properties and substitution mechanism of samarium-doped Ba0.68Sr0.32TiO3 ceramics [J]. Materials Research Bulletin 2009, 44: 82–85.

    Article  Google Scholar 

  14. GAUTAM C R, DWIVEDI R K, KUMAR D, PARKASH O. Synthesis and electrical conduction behaviour of strontium yttrium titanium cobalt oxide (Sr1−x YxTi1−x CoxO3, 0.01≤x≤0.10) [J]. Materials Letters, 2001, 50: 254–258.

    Article  Google Scholar 

  15. MENDELSON M I. Average grain size in polycrystalline ceramics [J]. Journal of American Ceramic Society, 1969, 52: 443–446.

    Article  Google Scholar 

  16. NELSON J B, RILEY D P. An experimental investigation of extrapolation methods in the dimensions of crystals derivation of accurate unit-cell [J]. Processing Physical Society, London, 1945, 57: 160–177.

    Article  Google Scholar 

  17. VEGARD L. The constitution of mixed crystals and the space occupied by atoms [J]. Zeitschrift fur Physik, 1921, 5: 17–26.

    Article  Google Scholar 

  18. ABDEEN A M, HEMEDA O M, ASSEM E E, EL-SEHLY M M. Structural, electrical and transport phenomena of Co ferrite substituted by Cd [J]. Journal of Magnetism and Magnetic Materials, 2002, 238: 75–83.

    Article  Google Scholar 

  19. HAQUE M M, HUQ M, HAKIM M A. Densification, magnetic and dielectric behaviour of Cu-substituted Mg-Zn ferrites [J]. Materials Chemistry and Physics, 2008, 112: 580–586.

    Article  Google Scholar 

  20. KUMAR M, YADAV K L. Rapid liquid phase sintered Mn doped BiFeO3 ceramics with enhanced polarization and weak magnetization [J]. Applied Physics Letter, 2007, 91: 112911–4.

    Article  Google Scholar 

  21. SINGH N K, KUMAR P, RAI R. Study of structural, dielectric and electrical behavior of (1−x)Ba(Fe0.5Nb0.5)O3−x SrTiO3 ceramics [J]. Journal of Alloys and Compounds, 2011, 509: 2957–2963

    Article  Google Scholar 

  22. WANG X X, CHOY S H, TANG X G, CHAN H L W. Dielectric behavior and microstructure of (Bi1/2Na1/2)TiO3-Bi1/2K1/2)TiO3-aTiO3 lead-free piezoelectric ceramics [J]. Journal of Applied Physics, 2005, 97: 104101–104104

    Article  Google Scholar 

  23. MAXWELL J C. Electricity and Magnetism, V-1 [B]. Oxford University Press, London, 1973.

    Google Scholar 

  24. WAGNER K W. Zur theorie der unvollkommenen dielektrika [J]. Annalen der Physik (Leipzig), 1913, 40: 817–855.

    Article  MATH  Google Scholar 

  25. KOOPS C G. On the dispersion of resistivity and dielectric constant of some semiconductors at audio frequencies [J]. Physical Review, 1951, 83: 121–124.

    Article  Google Scholar 

  26. BUSCAGLIA M T, BUSCAGLIA V, VIVIANI M, NANNI P, HANUSKOVA M. Influence of foreign ions on the crystal structure of BaTiO3 [J]. Journal of the European Ceramic Society, 2000, 20: 1997–2007.

    Article  Google Scholar 

  27. PARKASH O, KUMAR D, DWIVEDI R K, SRIVASTAVA K K, SINGH P, SINGH S. Effect of simultaneous substitution of La and Mn on dielectric behavior of barium titanate ceramic [J]. Journal of Materials Science, 2007, 42: 5490–5496.

    Article  Google Scholar 

  28. KROGER F A, VINK H J. Relations between the concentrations of imperfections in crystalline solids [J]. Solid State Physics, 1956, 3: 307–435.

    Google Scholar 

  29. CHUNG C C, CHAI Y L, CHANG Y S. Dielectric properties of valence compensated Ca1−x BixTi1−x CrxO3 perovskite prepared using the sol-gel process [J]. Journal of Physics and Chemistry of Solids, 2008, 69: 1877–1882.

    Article  Google Scholar 

  30. HUANG C L, LIN S H, LIU S S, CHEN Y B. x(Mg0.7Zn0.3)0.95Co0.05TiO3-(1-x)(La0.5Na0.5)TiO3 ceramic at microwave frequency with a near zero temperature coefficient of resonant frequency [J]. Journal of Alloys and Compounds, 2010, 489: 541–544.

    Article  Google Scholar 

  31. PATIL D R, CHOUGULE B K. Effect of resistivity on magnetoelectric effect in xNiFe2O4-(1-x)Ba0.9Sr0.1TiO3 ME composites [J]. Journal of Alloys and Compounds, 2009, 470: 531–535.

    Article  Google Scholar 

  32. PANDEY L, KATARE R, PARKASH O, KUMAR D. Evidence of two ferroelectric PTCR components in valence-compensated ceramic system Ba1−x Lax Ti1−x CoxO3 [J]. Bulletin Material Science, 1997, 20: 933–947.

    Article  Google Scholar 

  33. RANJAN R, KUMAR R, KUMAR N, BEHERA B, CHOUDHARY R N P. Impedance and electric modulus analysis of Sm-modified Pb(Zr0.55Ti0.45)1−x/4O3 ceramics [J]. Journal of Alloys and Compounds, 2011, 509: 6388–6394.

    Article  Google Scholar 

  34. ANG C, YU Z. Dielectric relaxor and ferroelectric relaxor: Bi-doped paraelectric SrTiO3 [J]. Journal of Applied Physics, 2002, 91: 1487–1494.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. Shah.

Additional information

Foundation item: Project supported by CASR of Bangladesh University of Engineering and Technology (BUET)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shah, M.R., Akther Hossain, A.K.M. High permittivity and low dielectric loss analysis of lead free Sr1−x La x (Ti0.5Fe0.5)O3 . J. Cent. South Univ. 20, 3363–3371 (2013). https://doi.org/10.1007/s11771-013-1860-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-013-1860-9

Key words

Navigation