Skip to main content
Log in

Influence of chemical composition and cold deformation on aging precipitation behavior of high nitrogen austenitic stainless steels

  • Published:
Journal of Central South University Aims and scope Submit manuscript

Abstract

The influence of chemical composition and cold deformation on aging precipitation behavior of 18Cr-16Mn-2Mo-1.1N (HNS-A), 18Cr-16Mn-1.3N (HNS-B), 18Cr-18Mn-2Mo-0.96N (HNS-C) and 18Cr-18Mn-2Mo-0.77N (HNS-D) high nitrogen austenitic stainless steels was investigated. The results show that the “nose” temperatures and incubation periods of the initial time-temperature-precipitation (TTP) curves of aged HNSs are found to be 850 °C, 60 s; 850 °C, 45 s; 850 °C, 60 s and 900 °C, 90 s, respectively. Based on the analysis of SAD patterns, the coarse cellular Cr2N precipitate which presents a lamellar structure has a hexagonal structure of a=0.478 nm and c=0.444 nm. The χ phase corresponding to a composition of Fe36Cr12Mo10, is determined to be a body-centered cubic structure of a=0.892 nm. The precipitating sensitivity presents no more difference with the nitrogen content increasing from 0.77% to 0.96%, but exhibits so obviously that the cellular precipitates nearly overspread the whole field. The addition of Mo element can restrain the TTP curves moving left and down, which means decreasing the sensitivity of aging precipitation. With increasing the cold deformation, the sensitivity of precipitation increases obviously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. UGGOWITZE P J, MAGDOWSKI R, SPEIDEL M O. Nickel free high nitrogen austenitic steels [J]. ISIJ International, 1996, 36(7): 901–908.

    Article  Google Scholar 

  2. ZHAO R, ZHANG Z, SHI J B, TAO L, SONG S Z. Characterization of stress corrosion crack growth of 304 stainless steel by electrochemical noise and scanning Kelvin probe [J]. Journal of Central South University of Technology, 2010, 17(1): 13–18.

    Article  Google Scholar 

  3. KIM Y S, NAM S M, KIM S J. Deformation behavior of nitrogen bearing austenitic steels with various nitrogen contents [J]. Key Engineering Materials, 2007, 345–346: 117–120.

    Article  Google Scholar 

  4. SHANKAR P, SHAIKH H, SIVAKUMAR S, VENUGOPALA S, SUNDARARAMANA D, KHATAKA H S. Effect of thermal aging on the room temperature tensile properties of AISI type 316LN stainless steel [J]. Journal of Nuclear Materials, 1999, 264(1): 29–34.

    Article  Google Scholar 

  5. MUDALI U K, DAYAL R K, GNANAMOORTHY J B, GILL T P S. Influence of nitrogen addition on microstructure and pitting corrosion resistance of austenitic weld metals [J]. Werkstoffe und Korrosion, 1986, 37(12): 637–643.

    Google Scholar 

  6. OGAWA M, HIRAOKA K, KATADA Y, SAGARA M, TSUKAMOTO S. Chromium nitride precipitation behavior in weld heat-affected zone of high nitrogen stainless steel [J]. ISIJ International, 2002, 42(12): 1391–1398.

    Article  Google Scholar 

  7. CHANDRA T, TSUZAKI K, MILITZER M, RAVINDRAN. Decomposition of austenite in Fe-25Cr-1N alloy produced by solution nitriding [J]. Materials Science Forum, 2007, 539–543: 4950–4955.

    Google Scholar 

  8. LEE T H, KIM S J, JUNG Y C. Crystallographic details of precipitates in Fe-22Cr-21Ni-6Mo-(N) superaustenitic stainless steels aged at 900 °C [J]. Metallurgical and Materials Transactions A, 2000, 31(7): 1713–1723.

    Article  Google Scholar 

  9. KNUTSEN R D, LANG C L, BASSON J A. Discontinuous cellular precipitation in a Cr-Mn-N steel with niobium and vanadium additions [J]. Acta Materialia, 2004, 52(8): 2407–2417.

    Article  Google Scholar 

  10. JIANG Z H, ZHANG Z R, LI H B, LI Z, MA Q F. Microstructural evolution and mechanical properties of aging high nitrogen austenitic stainless steels [J]. International Journal of Minerals, Metallurgy and Materials, 2010, 17(6): 729–736.

    Article  Google Scholar 

  11. ZHANG Z R, LI H B, JIANG Z H, LI Z, XU B Y. Influences of aging precipitation on corrosion resistance of 18Cr-18Mn-2Mo-0.77N HNS [J]. Advanced Materials Research, 2009, 79–82: 1013–1016.

    Article  Google Scholar 

  12. ZHANG Z R, JIANG Z H, LI H B, XU B Y. Effect of aging on mechanical properties of high nitrogen austenitic stainless steel [C]// Proceedings of 10-th International Conference on High Nitrogen Steels. Moscow: Rusmet Press, 2009: 112–117.

    Google Scholar 

  13. LEE T H, KIM S J, TAKAKI S. Time-temperature-precipitation characteristics of high-nitrogen austenitic Fe-18Cr-18Mn-2Mo-0.9N steel [J]. Metallurgical and Materials Transactions A, 2006, 37(12): 3445–3454.

    Article  Google Scholar 

  14. HA H Y, KWON H S. Effects of Cr2N on the pitting corrosion of high nitrogen stainless steels [J]. Electrochimica Acta, 2007, 52(5): 2175–2180.

    Article  Google Scholar 

  15. STEIN G, HUCHLENBROICH I. Manufacturing and application of high nitrogen steels [J]. Materials and Manufacturing Processes, 2004, 19(1): 7–17.

    Article  Google Scholar 

  16. KATADA Y, SAGARA M, KOBAYASHI Y, KODAMA T. Fabrication of high strength high nitrogen stainless steel with excellent corrosion resistance and its mechanical properties [J]. Materials and Manufacturing Processes, 2004, 19(1): 19–30.

    Article  Google Scholar 

  17. SAGARA M, KATADA Y, KODAMA T. Localized corrosion behavior of high nitrogen-bearing austenitic stainless steels in seawater environment [J]. ISIJ International, 2003, 43(5): 714–719.

    Article  Google Scholar 

  18. LI H B, JIANG Z H, CAO Y, ZHANG Z R. Fabrication of high nitrogen austenitic stainless steels with excellent mechanical and pitting corrosion properties [J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(4): 387–392.

    Article  Google Scholar 

  19. LI H B, JIANG Z H, MA Q F, LI W M. Manufacturing high nitrogen austenitic stainless steels by pressurized induction furnace [J]. Applied Mechanics and Materials, 2011, 52–54, 1687–1691.

    Google Scholar 

  20. WILLENBRUCH R D, CLAYTON C R, OVERSLUIZEN M, KIM D, LU Y. An XPS and electrochemical study of the influence of molybdenum and nitrogen on the passivity of austenitic stainless steel [J]. Corrosion Science, 1990, 31(15): 179–190.

    Article  Google Scholar 

  21. HALADA G P, CLAYTON C R. Comparison of Mo-N and W-N synergism during passivation of stainless steel through X-ray photoelectron spectroscopy and electrochemical analysis [J]. Journal of Vacuum Science Technology A, 1993, 11(4): 2342–2347.

    Article  Google Scholar 

  22. LI H B, JIANG Z H, YANG Y, ZHANG Z R. Pitting corrosion and crevice corrosion behavior of high nitrogen austenitic stainless steels [J]. International Journal of Minerals, Metallurgy and Materials, 2009, 16(5): 517–524.

    Article  Google Scholar 

  23. SONG Dong-li, GU Jian-feng, HU Ming-juan. Measurement and analysis of TTT diagrams of pre-hardened plastic die steels P20 and 718 [J]. Heat Treatment of Metals, 2003, 28(12): 27–29. (in Chinese)

    Google Scholar 

  24. CHEN Zhi-qiang. Recent development in high nitrogen stainless steel research [J]. Baosteel Technology, 2005, 5: 10–17. (in Chinese)

    Google Scholar 

  25. LI H B, JIANG Z H, SHEN M H, YOU X M. Manufacturing high nitrogen austenitic stainless steels by nitrogen gas alloying and adding nitrided ferroalloys [J]. Journal of Iron and Steel Research International, 2007, 14(3): 63–68.

    Google Scholar 

  26. SANTHI SRINIVAS N C, KUTUMBARAO V V. On the discontinuous precipitation of Cr2N in Cr-Mn-N austenitic stainless steels [J]. Scripta Materialia, 1997, 37(3): 285–291.

    Article  Google Scholar 

  27. KASPER J S. The ordering of atoms in the chi-phase of the iron-chromium-molybdenum system [J]. Acta Metallurgica, 1954, 3(2): 456–461.

    Article  Google Scholar 

  28. LEE D H, LEE D B, JUNG W S. High temperature oxidation of Fe-Cr-Mo alloys [J]. Journal of Ceramic Processing Research, 2006, 7(2): 140–143.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhou-hua Jiang  (姜周华).

Additional information

Foundation item: Project(51304041) supported by the National Natural Science Foundation of China; Project(N100402015) supported by Fundamental Research Funds for the Central Universities of China; Project(2012AA03A502) supported by the National High Technology Research and Development Program of China; Project supported by Program for Liaoning Innovative Research Team in University, China

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Hb., Jiang, Zh., Feng, H. et al. Influence of chemical composition and cold deformation on aging precipitation behavior of high nitrogen austenitic stainless steels. J. Cent. South Univ. 20, 3354–3362 (2013). https://doi.org/10.1007/s11771-013-1859-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11771-013-1859-2

Key words

Navigation